We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App





New Glycan-Based Flow-Through Device Detects SARS-COV-2 Using Sugars Rather Than Antibodies

By LabMedica International staff writers
Posted on 18 Oct 2021
Print article
Illustration
Illustration

Researchers have demonstrated a new technology to detect SARS-COV-2 using sugars rather than antibodies.

A collaborative study by the University of Warwick (Coventry, UK), Iceni Diagnostics Ltd. (Norwich, UK) and UHCW NHS Trust (Coventry and Warwickshire, UK) showed that glycans (sugars) can be used to detect COVID-19 infection from swab samples. The proof of concept demonstrated that next generation glycan-based rapid diagnostics can be deployed in real world situations.

Lateral flow diagnostics (LFDs) have been widely used during the COVID-19 pandemic to provide rapid identification of people with an active infection. These LFDs work by using antibodies, which ‘stick’ to the SARS-COV-2 virus. The research team at the University of Warwick have been working with Iceni Diagnostics to develop an alternative system of detection using glycans, where synthetic polymer chains are used to attach the glycans to the surface of nanoparticles. Viruses commonly use glycans as a ‘handle’ to attach to our cells, with the team mimicking this process to enable detection of SARS-COV-2.

Working with UHCW NHS Trust, the team demonstrated that prototype devices could identify COVID-19 positive swabs across a range of viral loads. The team also showed that the technology functioned well with the spike proteins from variants of concern, which is a key benefit of using glycan-binding technology. This work clearly demonstrates that glycan-recognition technology can be used to identify pathogens, which the academic/industry team are actively developing further as part of a collaborative project.

“This work shows the potential of using glycans as alternative detection reagents, compared to the traditional antibody-based techniques,” said Professor Matthew Gibson, Professor at Warwick Medical School and the Department of Chemistry at the University of Warwick. “Furthermore, the use of our polymeric linkers, which allows us to present the glycan on the nanoparticles (which make the red line), shows the benefit of true cross-disciplinary, cross-sector collaboration. This work shows that our approach can work with primary clinical samples and we are actively developing this into a real-world device with our partners.”

“This is a testament to the cutting-edge scientific research taking place at the University of Warwick and UHCW NHS Trust,” added Professor Dimitris Grammatopoulos, Professor at Warwick Medical School and Consultant in Clinical Biochemistry at UHCW NHS Trust. “Initial results of this prototype showed it can perform favorably in comparison to established COVID-19 tests with respect to cost, time, accuracy and reliability. We are delighted to collaborate on this research.”

“Our ambition was to exemplify how an academic and industry collaboration can translate hard-core scientific discoveries into practical solutions, and this study has proven we can do this by combining our deep experience in glycoscience,” concluded Professor Rob Field, Iceni Diagnostics’ Chief Scientific Officer. “The successful testing of the prototype device and glycan-based platform will now enable us to progress our viral and other pathogen pipelines, and we are delighted to continue working with the University of Warwick team on this program.”

Related Links:
University of Warwick 
Iceni Diagnostics Ltd. 
UHCW NHS Trust 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.