We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid Test Diagnoses Tropical Disease within Hours for Faster Antibiotics Treatment

By LabMedica International staff writers
Posted on 14 Mar 2024
Print article
Image: The new rapid test could save the lives of patients with melioidosis (Photo courtesy of 123RF)
Image: The new rapid test could save the lives of patients with melioidosis (Photo courtesy of 123RF)

Melioidosis, a neglected tropical disease, is believed to affect around 165,000 individuals globally each year, with approximately 89,000 succumbing to it. This illness is caused by the bacterium Burkholderia pseudomallei, which thrives in the soil and water of tropical and subtropical areas, gaining entry into humans through skin cuts, consumption, or inhalation. Diagnosing melioidosis poses challenges due to its varying symptoms ranging from localized infections and pneumonia to severe septicemia or prolonged chronic conditions. The disease's tendency to predominantly affect isolated rural communities contributes to its significant underreporting. Diagnosis traditionally depends on culturing bacterial specimens, a process extending over three to four days. Meanwhile, a large percentage of patients with melioidosis succumb to the disease, often within the initial 24 to 48 hours of hospital admission, while waiting for a diagnosis. Although no vaccine exists for melioidosis, it can be effectively managed with specific intravenous antibiotics if identified promptly. However, the current diagnostic delay leads to the initial administration of broad-spectrum antibiotics, unnecessarily extending treatment times and resource usage.

An international collaboration that included researchers from the Wellcome Sanger Institute (Cambridgeshire, UK) has led to the development of a rapid diagnostic test capable of identifying melioidosis within hours, significantly quicker than traditional methods. This advancement allows for the faster administration of appropriate antibiotics. Utilizing CRISPR technology, this new test identifies a Burkholderia pseudomallei-specific genetic marker with 93% sensitivity, offering a promise of higher survival rates through a rapid, globally applicable diagnostic solution. Developing this test involved the analysis of over 3,000 B. pseudomallei genomes, predominantly sequenced at the Sanger Institute, to identify a unique genetic target.

The designed test, CRISPR-BP34, enhances the DNA of the target bacterium through a recombinase polymerase amplification reaction, with a subsequent CRISPR reaction ensuring specificity. The presence of melioidosis is confirmed by a simple lateral flow 'dipstick' method. To validate this test, the team examined clinical samples from 114 melioidosis patients and 216 non-affected individuals from northeast Thailand, a melioidosis hotspot. The CRISPR-BP34 test demonstrated a 93% sensitivity rate, surpassing the 66.7% sensitivity of conventional bacterial culture techniques, and delivered results within four hours for urine, pus, and sputum samples, and within a day for blood samples, markedly faster than the current methods. This new rapid diagnostic test not only promises quicker diagnosis and treatment for melioidosis patients but also aims to conserve medical resources and reduce hospital stays by preventing the indiscriminate use of broad-spectrum antibiotics. The team is planning randomized clinical trials to further validate the test's effectiveness in hospitals and is exploring the influence of human genetics on melioidosis susceptibility and immune response.

“This research is a testament to international collaboration and how the application of genomics at scale leads to clinical intervention,” said Professor Nick Thomson, Head of Parasites and Microbes at the Wellcome Sanger Institute. “Using a genetic target mined from a bank of thousands of bacterial genomes, the team was able to produce an incredibly sensitive test that is specific to the bacterium behind melioidosis. I look forward to seeing the clinical impacts of this research.”

Related Links:
Wellcome Sanger Institute

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.