We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Study Advances Blood Tests for Psychiatric and Neurological Disorders

By LabMedica International staff writers
Posted on 16 Feb 2024

The lack of non-invasive methods for monitoring brain status is a significant challenge in psychiatric care. More...

Using genetic material from human blood and lab-grown brain cells, researchers have now made advances in developing a blood test to detect brain-related changes associated with postpartum depression and other psychiatric and neurological disorders.

The research by investigators at Johns Hopkins Medicine (Baltimore, MD, USA) focused on tracing brain cell-derived mRNAs in the bloodstream. These extracellular vesicles (EVs), which are tiny sacs containing genetic material, are crucial for cell communication and carry messenger RNA (mRNA) from the brain. This method allows for the detection of changes in gene activity within the brain. The team's interest in this area grew from an earlier study that found altered EV communication in pregnant women who developed postpartum depression after childbirth. The latest study used the human placenta as a model to identify 26 placental mRNAs in maternal blood during pregnancy, which disappear after birth. This discovery confirmed that mRNAs from specific tissues, including the brain, are present in EVs in the blood. Utilizing brain organoids derived from stem cells, the researchers demonstrated that EV mRNAs mirror changes within these brain tissues.

Through analysis of brain-specific mRNAs using the Human Protein Atlas and the Genotype-Tissue Expression Project, the researchers identified mRNAs linked to various brain functions and disorders, including mood disorders, schizophrenia, epilepsy, and substance abuse. They also pinpointed 13 brain-specific mRNAs associated with postpartum depression. The study compared mRNAs from cells and EVs in a brain organoid model, finding that while the levels differ, they are correlated. This correlation suggests that it is possible to infer changes in the brain based on EV mRNA levels in the blood. The ultimate aim is to create a simple blood test to detect mRNA level changes related to mental disorders, potentially allowing for early detection of psychiatric emergencies like suicidal behavior. By identifying patients at risk of a psychiatric episode, intervention and prevention of adverse outcomes could be possible. Future research will focus on developing similar tests for conditions like autism spectrum disorder using lab-grown brain samples.

“This is very exciting, because right now, there isn’t a blood marker for disorders affecting the brain,” said Lena Smirnova, Ph.D., an assistant professor at the Johns Hopkins Bloomberg School of Public Health. “Essentially, these conditions are diagnosed by clinical interviews between patients and providers.”

Related Links:
Johns Hopkins Medicine


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.