We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microneedle Skin Patch Enables Cancer Biomarker Sampling for Single-Molecule Measurement

By LabMedica International staff writers
Posted on 18 Sep 2023

Patients suffering from melanoma, a severe form of skin cancer where cells that produce pigment grow uncontrollably, have mixed results with current immunotherapies. More...

Over half of these patients do not respond to the available immunotherapy medications, and of those who initially do, many later develop resistance. Therefore, medical professionals need tools to identify which patients are likely to respond positively to the treatment from the outset and which ones will continue or stop responding. Given that skin tumors in melanoma patients are easily accessible, applying immunotherapies directly to the affected area, rather than infusing them through the bloodstream, could be more effective. Moreover, observing how the immune system responds to the treatment directly at the tumor location could lead to more personalized care for patients through continuous and accurate monitoring of various indicators that signal effective immune cell activation and the desired inflammatory response.

Now, a research team including scientists at the Wyss Institute at Harvard University (Boston, MA, USA) has developed an innovative technique that combines a minimally invasive, painless microneedle platform with an ultra-sensitive, single-molecule detection method known as Simoa. These microneedles can absorb fluid that contains biomarkers from deeper skin layers, while the Simoa technology can recognize these often elusive but crucial biomarkers with greater sensitivity than traditional methods. As a proof of concept, the researchers tested their approach in a mouse model of melanoma, treating the cancerous growths with a new kind of therapy. This novel treatment employs focused ultrasound to generate heat and instantly kill tumor cells at the lesion site, and it is paired with a specially designed nanoparticle that activates an inflammation-causing protein known as the stimulator of interferon genes (STING).

The team developed four different Simoa assays to detect molecules whose expression is activated by STING: interferon-b (IFN-b), MCP-1 and KC, which draw immune cells towards the tumors, as well as the broad inflammation marker, interleukin-6 (IL-6). This allowed the researchers to detect these biomarkers in fluid samples collected by the microneedles with sensitivities 100 to 1000 times greater than conventional tests. Importantly, these measurements were in line with other Simoa tests of the same biomarkers in blood samples. The study findings are reported in Advanced Functional Materials.

“Rapid readout of the responses to melanoma therapy using microneedles may enable effective drug screening and patient stratification to maximize therapeutic benefits,” said Wyss Associate Faculty member Natalie Artzi, Ph.D., who led the study.

“The Artzi lab’s remarkable microneedle technology containing engineered nanostructures, in principle, enables both, drug delivery and microsampling – a completely new concept for a theranostic, which provides an ideal, non-invasive and comprehensive solution to melanoma treatment,” said Wyss Core Faculty member David Walt, Ph.D., who had previously developed the Simoa technology, which has ultrasensitive biomarker detection abilities.

Related Links:
Wyss Institute at Harvard University


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.