We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

24 Feb 2024 - 28 Feb 2024
05 Mar 2024 - 07 Mar 2024

Microneedle Skin Patch Enables Cancer Biomarker Sampling for Single-Molecule Measurement

By LabMedica International staff writers
Posted on 18 Sep 2023
Print article
Image: Biomarker molecules can be sampled from melanoma lesions using microneedles (Photo courtesy of Wyss Institute)
Image: Biomarker molecules can be sampled from melanoma lesions using microneedles (Photo courtesy of Wyss Institute)

Patients suffering from melanoma, a severe form of skin cancer where cells that produce pigment grow uncontrollably, have mixed results with current immunotherapies. Over half of these patients do not respond to the available immunotherapy medications, and of those who initially do, many later develop resistance. Therefore, medical professionals need tools to identify which patients are likely to respond positively to the treatment from the outset and which ones will continue or stop responding. Given that skin tumors in melanoma patients are easily accessible, applying immunotherapies directly to the affected area, rather than infusing them through the bloodstream, could be more effective. Moreover, observing how the immune system responds to the treatment directly at the tumor location could lead to more personalized care for patients through continuous and accurate monitoring of various indicators that signal effective immune cell activation and the desired inflammatory response.

Now, a research team including scientists at the Wyss Institute at Harvard University (Boston, MA, USA) has developed an innovative technique that combines a minimally invasive, painless microneedle platform with an ultra-sensitive, single-molecule detection method known as Simoa. These microneedles can absorb fluid that contains biomarkers from deeper skin layers, while the Simoa technology can recognize these often elusive but crucial biomarkers with greater sensitivity than traditional methods. As a proof of concept, the researchers tested their approach in a mouse model of melanoma, treating the cancerous growths with a new kind of therapy. This novel treatment employs focused ultrasound to generate heat and instantly kill tumor cells at the lesion site, and it is paired with a specially designed nanoparticle that activates an inflammation-causing protein known as the stimulator of interferon genes (STING).

The team developed four different Simoa assays to detect molecules whose expression is activated by STING: interferon-b (IFN-b), MCP-1 and KC, which draw immune cells towards the tumors, as well as the broad inflammation marker, interleukin-6 (IL-6). This allowed the researchers to detect these biomarkers in fluid samples collected by the microneedles with sensitivities 100 to 1000 times greater than conventional tests. Importantly, these measurements were in line with other Simoa tests of the same biomarkers in blood samples. The study findings are reported in Advanced Functional Materials.

“Rapid readout of the responses to melanoma therapy using microneedles may enable effective drug screening and patient stratification to maximize therapeutic benefits,” said Wyss Associate Faculty member Natalie Artzi, Ph.D., who led the study.

“The Artzi lab’s remarkable microneedle technology containing engineered nanostructures, in principle, enables both, drug delivery and microsampling – a completely new concept for a theranostic, which provides an ideal, non-invasive and comprehensive solution to melanoma treatment,” said Wyss Core Faculty member David Walt, Ph.D., who had previously developed the Simoa technology, which has ultrasensitive biomarker detection abilities.

Related Links:
Wyss Institute at Harvard University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary

Print article

Channels

Clinical Chemistry

view channel
Image: Wireless Point-of-Care Testing for Hepatitis B Virus (Photo courtesy of Chulalongkorn University)

Wireless Hepatitis B Test Kit Completes Screening and Data Collection in One Step

Hepatitis B, a significant global health concern, is responsible for chronic liver diseases like cirrhosis and liver cancer which is one of the most common cancers worldwide. The challenge with hepatitis... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Pathology

view channel
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique.... Read more

Industry

view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.