We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Method Using DNA Nanoballs to Revolutionize Pathogen Detection

By LabMedica International staff writers
Posted on 08 Sep 2023
Print article
Image: Electronic detection of DNA nanoballs enables simple pathogen detection (Photo courtesy of 123RF)
Image: Electronic detection of DNA nanoballs enables simple pathogen detection (Photo courtesy of 123RF)

Throughout the recent COVID-19 pandemic, protein-based diagnostics played a significant role in rapid testing. However, developing high-quality antibodies for these methods is time-consuming. In contrast, nucleic acid-based approaches offer advantages in terms of development ease, sensitivity, and flexibility. Scientists have now pioneered a novel technique using DNA Nanoballs for pathogen detection that could simplify nucleic acid testing and revolutionize pathogen identification. Their research could pave the way for a simple electronic-based test to quickly and affordably identify various nucleic acids in diverse scenarios.

The methodology developed by researchers at Karolinska Institute (Stockholm, Sweden) combined Molecular Biology (specifically DNA Nanoball generation) with electronics (electric impedance-based quantification) to create this groundbreaking detection tool. They are cautiously optimistic about its potential to identify a range of pathogenic agents in real-world settings. The team modified an isothermal DNA amplification reaction called LAMP to produce tiny DNA nanoballs measuring 1-2μM if the pathogen was present in the sample. These nanoballs are then guided through tiny channels and electrically identified as they pass between two electrodes. The method has demonstrated impressive sensitivity, capable of detecting as few as 10 target molecules, and provides rapid results in under an hour using a compact, stationary system.

This label-free detection method has the potential to accelerate the development of new diagnostic kits. By combining affordable mass-produced electronics with lyophilized reagents, it could become a cost-effective, widely accessible, and scalable point-of-care device. Currently, the research team is actively exploring applications in fields such as environmental monitoring, food safety, virus detection, and antimicrobial resistance testing. They are also considering licensing options and establishing a startup to leverage this technology, having recently applied for a patent.

“Fast and accurate detection of genetic material is key for diagnosis, especially so in response to the emergence of novel pathogens,” said principal investigator Vicent Pelechano.

Related Links:
Karolinska Institute 

New
Gold Member
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)
New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Male Fertility Rapid Test
SP-10
New
Gold Member
Chagas Disease Test
CHAGAS Cassette

Print article

Channels

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more

Pathology

view channel
Image: The OmicsFootPrint AI tool could open doors to new discoveries (Photo courtesy of Mayo Clinic)

Revolutionary AI Tool Transforms Disease Visualization

Genes serve as the body's blueprint, while proteins execute the instructions within those blueprints to maintain cell function. Occasionally, alterations in these instructions—known as mutations—can interfere... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.