We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Method Using DNA Nanoballs to Revolutionize Pathogen Detection

By LabMedica International staff writers
Posted on 08 Sep 2023
Print article
Image: Electronic detection of DNA nanoballs enables simple pathogen detection (Photo courtesy of 123RF)
Image: Electronic detection of DNA nanoballs enables simple pathogen detection (Photo courtesy of 123RF)

Throughout the recent COVID-19 pandemic, protein-based diagnostics played a significant role in rapid testing. However, developing high-quality antibodies for these methods is time-consuming. In contrast, nucleic acid-based approaches offer advantages in terms of development ease, sensitivity, and flexibility. Scientists have now pioneered a novel technique using DNA Nanoballs for pathogen detection that could simplify nucleic acid testing and revolutionize pathogen identification. Their research could pave the way for a simple electronic-based test to quickly and affordably identify various nucleic acids in diverse scenarios.

The methodology developed by researchers at Karolinska Institute (Stockholm, Sweden) combined Molecular Biology (specifically DNA Nanoball generation) with electronics (electric impedance-based quantification) to create this groundbreaking detection tool. They are cautiously optimistic about its potential to identify a range of pathogenic agents in real-world settings. The team modified an isothermal DNA amplification reaction called LAMP to produce tiny DNA nanoballs measuring 1-2μM if the pathogen was present in the sample. These nanoballs are then guided through tiny channels and electrically identified as they pass between two electrodes. The method has demonstrated impressive sensitivity, capable of detecting as few as 10 target molecules, and provides rapid results in under an hour using a compact, stationary system.

This label-free detection method has the potential to accelerate the development of new diagnostic kits. By combining affordable mass-produced electronics with lyophilized reagents, it could become a cost-effective, widely accessible, and scalable point-of-care device. Currently, the research team is actively exploring applications in fields such as environmental monitoring, food safety, virus detection, and antimicrobial resistance testing. They are also considering licensing options and establishing a startup to leverage this technology, having recently applied for a patent.

“Fast and accurate detection of genetic material is key for diagnosis, especially so in response to the emergence of novel pathogens,” said principal investigator Vicent Pelechano.

Related Links:
Karolinska Institute 

New
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
PoC Testing Device
QuikRead
New
Human Papillomavirus Multiplex Assay
Anyplex Ⅱ HPV28 Detection

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.