We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Lupus Biomarker Testing Could Help Identify Patients That Need Early and Aggressive Treatment

By LabMedica International staff writers
Posted on 31 Mar 2023

Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs when the body's antibodies, which usually protect against infections, attack healthy cells and proteins. More...

These autoantibodies can cause inflammation and harm to various organ systems. Now, scientists researching the origins of SLE and the reasons why some patients have more severe symptoms than others have discovered a type of autoantibody that could worsen the disease and identified how these autoantibodies are formed. These findings may have implications for lupus biomarker testing and aid in the early detection and aggressive treatment of patients.

Before, it was unclear to researchers why the severity of SLE varied so greatly among patients who possess anti-DNA antibodies, which attack DNA. Investigators at Johns Hopkins Medicine (Baltimore, MD, USA) have discovered that a specific subset of these antibodies attacks DNase1L3, a critical enzyme in the body. Anti-DNA antibodies are a distinguishing feature of SLE patients, but not all such antibodies cause the disease, and their root cause is still unknown. To uncover the reasons behind the variation in SLE severity among patients with anti-DNA antibodies, the Johns Hopkins researchers looked at a different antibody that targets the enzyme DNase1L3. This enzyme plays a crucial role in clearing DNA from dead cells, and when it is blocked by antibodies, inflammation occurs due to the accumulation of DNA in the body.

In studying these antibodies, the researchers found that a subset of anti-DNase1L3 antibodies also targeted DNA in patients with severe SLE. To investigate the relationship between anti-DNase1L3 antibodies and severe SLE, the researchers analyzed blood and serum samples from 158 SLE patients and 62 non-lupus individuals. The results showed that high levels of illness were associated with antibodies that targeted both DNase1L3 and DNA, but only when both types of antibodies were present in patients, not just one class of antibody.

The researchers then went on to investigate the function and origin of these antibodies using molecular analysis. The results of the analysis were surprising as it revealed that the antibodies previously believed to target either DNA or DNase1L3 were actually a single antibody that could attack both molecules. The researchers suggest that this unique type of antibody could explain the variation in SLE severity among patients and why those who test positive for only one antibody may not develop severe SLE. The findings also challenge the current belief that DNA causes the formation of anti-DNA antibodies. Instead, the researchers propose that a subset of anti-DNA antibodies originates from anti-DNase1L3 antibodies, and that they acquire the ability to attack DNA through antibody mutations.

“Our findings provide a simple explanation for the differences of anti-DNA antibodies in SLE by demonstrating that some of these autoantibodies have multiple functions,” said corresponding author Felipe Andrade, M.D., Ph.D., an associate professor of medicine in the Division of Rheumatology at the Johns Hopkins University School of Medicine. “We hope these findings will improve ways of identifying patients with severe lupus and also help doctors choose appropriate treatments. This research may help uncover underlying mechanisms of lupus and why it affects patients differently.”

Related Links:
Johns Hopkins Medicine


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.