We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Lupus Biomarker Testing Could Help Identify Patients That Need Early and Aggressive Treatment

By LabMedica International staff writers
Posted on 31 Mar 2023
Print article
Image: Researchers have identified the origin of subset of autoantibodies that worsen lupus (Photo courtesy of Pexels)
Image: Researchers have identified the origin of subset of autoantibodies that worsen lupus (Photo courtesy of Pexels)

Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs when the body's antibodies, which usually protect against infections, attack healthy cells and proteins. These autoantibodies can cause inflammation and harm to various organ systems. Now, scientists researching the origins of SLE and the reasons why some patients have more severe symptoms than others have discovered a type of autoantibody that could worsen the disease and identified how these autoantibodies are formed. These findings may have implications for lupus biomarker testing and aid in the early detection and aggressive treatment of patients.

Before, it was unclear to researchers why the severity of SLE varied so greatly among patients who possess anti-DNA antibodies, which attack DNA. Investigators at Johns Hopkins Medicine (Baltimore, MD, USA) have discovered that a specific subset of these antibodies attacks DNase1L3, a critical enzyme in the body. Anti-DNA antibodies are a distinguishing feature of SLE patients, but not all such antibodies cause the disease, and their root cause is still unknown. To uncover the reasons behind the variation in SLE severity among patients with anti-DNA antibodies, the Johns Hopkins researchers looked at a different antibody that targets the enzyme DNase1L3. This enzyme plays a crucial role in clearing DNA from dead cells, and when it is blocked by antibodies, inflammation occurs due to the accumulation of DNA in the body.

In studying these antibodies, the researchers found that a subset of anti-DNase1L3 antibodies also targeted DNA in patients with severe SLE. To investigate the relationship between anti-DNase1L3 antibodies and severe SLE, the researchers analyzed blood and serum samples from 158 SLE patients and 62 non-lupus individuals. The results showed that high levels of illness were associated with antibodies that targeted both DNase1L3 and DNA, but only when both types of antibodies were present in patients, not just one class of antibody.

The researchers then went on to investigate the function and origin of these antibodies using molecular analysis. The results of the analysis were surprising as it revealed that the antibodies previously believed to target either DNA or DNase1L3 were actually a single antibody that could attack both molecules. The researchers suggest that this unique type of antibody could explain the variation in SLE severity among patients and why those who test positive for only one antibody may not develop severe SLE. The findings also challenge the current belief that DNA causes the formation of anti-DNA antibodies. Instead, the researchers propose that a subset of anti-DNA antibodies originates from anti-DNase1L3 antibodies, and that they acquire the ability to attack DNA through antibody mutations.

“Our findings provide a simple explanation for the differences of anti-DNA antibodies in SLE by demonstrating that some of these autoantibodies have multiple functions,” said corresponding author Felipe Andrade, M.D., Ph.D., an associate professor of medicine in the Division of Rheumatology at the Johns Hopkins University School of Medicine. “We hope these findings will improve ways of identifying patients with severe lupus and also help doctors choose appropriate treatments. This research may help uncover underlying mechanisms of lupus and why it affects patients differently.”

Related Links:
Johns Hopkins Medicine

Unit-Dose Twist-Tip BFS
New
Gold Supplier
Dengue ELISA Test
Dengue Virus IgM
New
Semi-Automatic Coagulation Analyzer
Clot 2B
New
Incubation & Imaging System
BD KiestraReadA

Print article

Channels

Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more

Hematology

view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more

Immunology

view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more

Microbiology

view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more

Pathology

view channel
Image: navify digital solutions can helping labs mitigate unique quality challenges (Photo courtesy of Roche)

Cloud-Based Digital Solution Allows Labs to Track Test Samples along Entire Diagnostic Journey

Diagnosing a disease involves a meticulous procedure of monitoring a patient's diagnostic sample throughout its entire journey, which aids in clinical decision-making. However, there aren't any standardized... Read more

Technology

view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more

Industry

view channel
Image: The global hemostasis diagnostics market is expected to reach USD 3.95 billion by 2025 (Photo courtesy of Freepik)

Global Hemostasis Diagnostics Market Driven by Increase in Invasive Surgical Procedures

Injury or surgery naturally creates bleeding in living beings, which must be stopped to prevent excessive blood loss. The human body implements a protective mechanism known as hemostasis to stop excessive bleeding.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.