Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




‘Glow-In-The-Dark’ Proteins to Help Diagnose Viral Diseases More Quickly and Easily

By LabMedica International staff writers
Posted on 16 Mar 2023

Despite undergoing technological advancements, most diagnostic tests for viral diseases that are highly sensitive still involve complex techniques to prepare a sample or interpret the results, making it hard to administer these tests in point-of-care settings or in locations with limited resources. More...

Now, a team of researchers has come up with a sensitive technique that analyzes viral nucleic acids in as little as 20 minutes and can be finished in one step using “glow-in-the-dark” proteins.

Bioluminescence is a scientific phenomenon caused by a chemical reaction involving the luciferase protein that creates the luminescent, glow-in-the-dark effect. The luciferase protein has been utilized in creating sensors that emit observable light when they detect their target, making them perfect for point-of-care testing. Nonetheless, these sensors lack the high levels of sensitivity required of a clinical diagnostic test. A gene-editing method known as CRISPR has shown promise in providing this ability, although it requires multiple steps and additional specialized instruments to detect low signals from a complex and noisy sample. So, researchers at Eindhoven University of Technology (Eindhoven, Netherlands) aimed to use CRISPR-related proteins, but combine them with a bioluminescence technique whose signal could be detected with only a digital camera.

In order to ensure that there were sufficient RNA or DNA samples for analysis, the scientists employed recombinase polymerase amplification (RPA), which is a straightforward technique that operates at a constant temperature of around 100 F. The researchers devised a new technique, LUNAS (luminescent nucleic acid sensor), that is comprised of two CRISPR/Cas9 proteins specific for different neighboring parts of a viral genome each have a distinct fragment of luciferase attached to them. Upon detecting the presence of a specific viral genome being tested, the two CRISPR/Cas9 proteins bind to the designated nucleic acid sections and are drawn close to one another, enabling the complete luciferase protein to form and shine blue light in the presence of a chemical substrate.

To take into account the depletion of the substrate, the researchers utilized a control reaction that radiated green light. The presence of a positive result was indicated by a tube that changed from green to blue. The RPA-LUNAS technique successfully detected SARS-CoV-2 RNA in clinical samples obtained from nasal swabs in just 20 minutes, even at concentrations as low as 200 copies per microliter. The researchers believe that the LUNAS assay holds immense potential for quickly and efficiently detecting various other viruses.

Related Links:
Eindhoven University of Technology 


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
Specimen Radiography System
TrueView 200 Pro
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.