We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Biosensor to Detect DNA Damage in Real Time Could Revolutionize Cancer Treatment

By LabMedica International staff writers
Posted on 16 Mar 2023
Print article
Image: The biosensor could help optimize cancer treatment, identify DNA damage factors, and elucidate repair mechanisms (Photo courtesy of Pexels)
Image: The biosensor could help optimize cancer treatment, identify DNA damage factors, and elucidate repair mechanisms (Photo courtesy of Pexels)

Double-strand breaks (DSBs) are a form of DNA damage in which both strands of DNA break at the same place, adversely affecting cell growth and functioning. Presently, immunostaining techniques are utilized to detect DSBs by identifying the markers accompanying DNA damage, such as the γH2AX protein. Nonetheless, these processes are laborious and incapable of recognizing DSBs in real-time in living specimens.

Scientists from Pusan National University (Busan, South Korea) have invented a new biosensor that utilizes fluorescence resonance energy transfer (FRET) to spot DNA double-strand breaks in real-time in living specimens. The biosensor has the potential to transform cancer treatment by providing doctors with an understanding of how cells respond to therapeutic treatments and also aid in the discovery of new DNA repair drugs. Moreover, the new biosensor can be instrumental in discovering new treatments for DNA damage-related diseases by providing insights into how the human body repairs damaged DNA.

In a 2023 study, published in Biomaterials Research, researchers describe a FRET biosensor that is capable of detecting DSBs in real-time, and providing time- and location-based data on yH2AX. The FRET sensor comprises two fluorescent proteins or dyes - a donor and an acceptor - which examine the interactions between biological molecules. The energy transfer, and consequently, the amount of emitted light (the FRET signal) depends on the distance and orientation between the two dyes. The research team attached the fluorescent dyes with proteins involved in the cellular response to DNA damage, namely the H2AX substrate and BRCT1 domain. The H2AX substrate is a target for the H2AX protein to bind and become phosphorylated (forming γH2AX).

On the other hand, the BRCT1 domain serves as a site for the collection of repair proteins, including γH2AX. Thus, when a DSB occurs, γH2AX is attracted to the BRCT1 domain, resulting in a conformational change in the fluorescent proteins, thus resulting in a change in the FRET signal. The researchers then proceeded to confirm the validity of the sensor by introducing plasmids (DNA that, here, contains instructions to make the FRET sensor inside the cells) encoding the FRET sensor into human embryonic kidney cells (HEK293T) cells. The biosensor was found to be more sensitive at reacting to the presence of γH2AX than conventional immunostaining techniques, thus making it better at detecting drug- and radiation-induced DSBs.

"The biosensor we have designed could be useful in areas such as cancer treatment and drug discovery," said Associate Professor Tae-Jin Kim, from Pusan National University, Korea, who led the study. "Moreover, as changes in the FRET signal give useful indications of the extent of the DNA damage, the sensor can also be used to examine DNA damage and repair mechanisms, optimize cancer treatments, discover and assess DNA repair drugs, and identify DNA damaging factors in the environment."

Related Links:
Pusan National University

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.