We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Novel Non-Sputum Based Technology Quickly and Easily Detects Active TB

By LabMedica International staff writers
Posted on 16 Mar 2023
Print article
Image: Researchers have discovered a new technology that will quickly and easily detect active TB infection antibodies (Photo courtesy of Wayne State University)
Image: Researchers have discovered a new technology that will quickly and easily detect active TB infection antibodies (Photo courtesy of Wayne State University)

TB, caused by Mycobacterium tuberculosis, is a serious global health concern that results in 10 million new cases and 1.7 million deaths annually. According to the latest report by the World Health Organization, TB is the 13th leading cause of death worldwide, and the second leading infectious disease killer after COVID-19. The presence of Latent Tuberculosis Infection (LTBI) is a critical issue, as it serves as a reservoir for TB bacteria and increases the risk of developing active TB. Alarmingly, one-third of the world's population is infected with TB, and 5 to 10% of those with LTBI will progress to active TB within the first five years after initial infection.

The current gold standard diagnostic tests for detecting active TB infection are the sputum smear and culture tests. Unfortunately, these methods have several limitations, including the need for collecting sputum, trained personnel, cost, lengthy processing time, and inadequate sensitivity. Similarly, conventional tests for differentiating latent TB from uninfected individuals, such as tuberculin skin tests (TST) and interferon gamma release assays (IGRA), are not effective in distinguishing active TB from latent infection. Despite advancements in rapid molecular diagnostic techniques for TB, there remains a significant need for a time-efficient, cost-effective, and non-sputum-based point-of-care (POC) test. Now, researchers at Wayne State University (Detroit, MI, USA) have discovered a new technology that can rapidly and easily detect active TB infection antibodies.

For over 15 years, a dedicated research group at Wayne State has been focusing on developing technology for detecting antibodies related to various respiratory diseases. The team has successfully created an innovative non-sputum-based approach and identified multiple novel immune-epitopes that differentially bind to specific immunoglobulin (IgG) found in individuals who are infected with TB. By measuring the levels of epitope-specific IgG in the serum, this breakthrough technology can distinguish active TB from LTBI subjects, healthy individuals, and other respiratory diseases. This simple and non-sputum-based serological POC-TB test is highly sensitive and specific, making it an ideal option to differentiate active TB from LTBI.

The researchers had earlier developed a T7 phage antigen display platform and after immunoscreening of large sets of serum samples, they identified 10 clones that differentially bind to serum antibody (IgG) of active TB patients differentiating TB from other respiratory diseases. One of these high-performance clones had homology to the Transketolase (TKT) enzyme of TB bacteria that is an essential enzyme required for the intracellular growth of the bacteria in a host. The researchers hypothesized that abundance of IgG in sera against the identified novel neoantigen that they named as TKTµ could differentiate between active TB, LTBI and other non-TB granulomatous lung diseases like sarcoidosis. The team developed a novel direct Peptide ELISA test to quantify the levels of IgG in serum samples against TKTµ. The research team designed two additional overlapping M.tb TKT-peptide homologs with potential antigenicity corresponding to M.tb-specific transketolase (M.tb-TKT1 and M.tb-TKT3) and hence standardized three Peptide ELISA (TKTμ, M.tb TKT1 and M.tb TKT3) for the TB serodiagnosis.

After development and standardization of a direct peptide ELISA for three peptides, the research team tested 292 subjects, and their TKT-peptide ELISA results revealed that TB patients had significantly higher levels of TKT-specific antibodies than healthy controls or those with LTBI. The higher levels of TKT-specific antibodies can be attributed to growing M.tb bacteria in active TB patients. TKT plays a crucial role in the transition from the dormant to the proliferative phase, and TKT specific IgG can reveal differences between active TB and LTBI. Consequently, IgG-based serodiagnosis of TB utilizing TKT-peptide ELISA holds promise. The current commercially available serological TB tests exhibit inadequate sensitivity and specificity. However, the ELISA results from the newly discovered TKT peptides demonstrated high sensitivity and specificity. The research team's findings indicate that IgG antibodies against transketolase have the potential to distinguish active tuberculosis.

“Our TKT peptide ELISA test requires chemically synthesized TKT peptides to coat the wells in the ELISA plate, less than 100µl blood serum sample from patient, detection reagents and an ELISA plate reader,” said Lobelia Samavati, M.D., professor in the Center for Molecular Medicine and Genetics in the School of Medicine, who led the research team. “We are extremely enthusiastic about our technology and the fact that with a simple test we can differentiate active TB from LTBI and other respiratory diseases. We believe that our method and TKT peptide ELISA can fit the requirements of the World Health Organization and the Centers for Disease Control and Prevention as a POC screening method.”

Related Links:
Wayne State University

Gold Supplier
D-Dimer Rapid Test
TNC & RBC Reagents
GloCyte TNC & RBC Reagents
Gliadin IgG Test
Gliadin IgG Test System
Gold Supplier
CLIA Processor

Print article


Clinical Chem.

view channel
Image: Brief schematic diagram of the detection principle and method (Photo courtesy of CAS)

Rapid, Non-Invasive Method Diagnoses Type 2 Diabetes by Sniffing Urinary Acetone

Over 90% of diabetes cases are attributed to Type 2 diabetes (T2D), a prevalent metabolic condition that is expected to impact 380 million individuals globally by 2025. Despite being highly accurate, the... Read more

Molecular Diagnostics

view channel
Image: The new assay enables accurate prognosis and detection data for those prone to esophageal cancer (Photo courtesy of Previse)

First-of-Its-Kind Test Helps Determine Future Risk of Esophageal Cancer

Esophageal cancer is among the most lethal cancers in the world and has a 20% five-year survival rate post-diagnosis. Barrett's esophagus is the sole precursor known and is a significant risk factor for... Read more


view channel
Image: A genetic test could guide the use of cancer chemotherapy (Photo courtesy of Pexels)

Genetic Test Predicts Whether Bowel Cancer Patients Can Benefit From Chemotherapy

Late-stage bowel cancer patients usually undergo a series of chemotherapies and targeted medicines for cancer treatment. However, the responses to the last-line chemotherapy treatment trifluridine/tipiracil... Read more


view channel
Image: Sampling a single stool using multiple PCR panels can identify more pathogens rapidly (Photo courtesy of Pexels)

PCR Panels for Acute GI Infections Can Lower Costs, Hospitalization and Antibiotic Use

Acute gastroenteritis impacts adults across all age groups and incurs enormous healthcare expenses. Now, a new study comprising 40,000 hospital visits across various geographic locations has revealed that... Read more


view channel
Image: Artificial intelligence predicts genetics of cancerous brain tumors in under 90 seconds (Photo courtesy of Michigan Medicine)

AI-Based Diagnostic Screening System Predicts Genetics of Cancerous Brain Tumors in 90 Seconds

The diagnosis and treatment of gliomas increasingly rely on molecular classification, as surgical benefits and risks vary depending on a patient's genetic makeup. Complete removal of the tumor can extend... Read more


view channel
Image: Live view of non-fluorescent specimens using the glowscope frame (Photo courtesy of Winona State University)

Device Converts Smartphone into Fluorescence Microscope for Just USD 50

Fluorescence microscopes are utilized to examine specimens labeled with fluorescent stains or expressing fluorescent proteins, like those tagged with green fluorescent protein. However, since these microscopes... Read more


view channel
Image: Roche and Lilly will collaborate on the development of Roche Diagnostics’ Elecsys Amyloid Plasma Panel (Photo courtesy of Roche)

Roche and Eli Lilly Collaborate on Innovative Blood Test for Early Diagnosis of Alzheimer's

Presently, obstacles to timely and precise diagnosis of Alzheimer's disease exist globally, resulting in as many as 75% of individuals exhibiting symptoms but lacking a formal diagnosis.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.