We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Electrochemical Cell-Free Biosensor Directly Detects Influenza Antibodies in Blood at POC

By LabMedica International staff writers
Posted on 18 Jan 2023
Print article
Electrochemical biosensor enables antibody detection (Photo courtesy of Pexels)
Electrochemical biosensor enables antibody detection (Photo courtesy of Pexels)

The quantitative detection of specific antibodies in complex samples like blood can make it possible to identify several diseases although it generally requires a complicated laboratory procedure. Researchers have now developed a new method for the rapid, inexpensive, yet quantitative and specific point-of-care detection of antibodies. The new method uses an electrochemical cell-free biosensor that can directly detect antibodies against diseases such as influenza in blood serum.

Influenza is a serious, widespread, epidemic disease that can prove fatal as well as create significant societal and economic consequences. This makes the clinical evaluation of immune responses to flu vaccines and infections highly important. A simple, inexpensive, point-of-care diagnostic method is a more suitable alternative to the presently available expensive and complex laboratory analysis. The new method developed by researchers at University of Rome (Rome, Italy) meets this need and is based on “programmable” gene circuits, cell-free transcription, and electrochemical detection.

In living cells, genes are read by RNA polymerases and transcribed into an RNA sequence, which then acts as a blueprint for building proteins. This “machinery” can also be used by cell-free systems. In order to build the new detector, the researchers combined this type of machinery with specifically designed synthetic gene circuits that become “switched on” when the antibody being tested for is present in the sample. As an example, the team designed a test that detects anti-influenza antibodies, which are directed against a surface molecule on influenza viruses. The researchers achieved this by developing a synthetic gene with an incomplete promoter which is a DNA segment that controls the reading of the gene. If the promoter is incomplete, then RNA polymerase cannot begin the RNA transcription.

The test solution also contains a pair of synthetic DNA strands that are bound to a protein portion (also called peptide) that is specifically recognized by anti-influenza antibodies. Upon binding between the antibodies and the peptide, the two DNA strands are arranged in a manner that completes the promoter and switches the synthetic gene on. The RNA polymerase can now dock on the synthetic gene and begin transcribing the RNA strands. These RNA strands, in turn, can bind specifically to a DNA probe fixed to a small disposable electrode and provide a measurable current signal change.

Provided that here are no antibodies present, no RNA will be transcribed and no change in the current signal will be measured by the disposable electrode. If the sample contains influenza antibodies, then the machinery synthesizes RNA, which binds to the electrode, leading to a current signal. The reliable and inexpensive system is very specific and sensitive, and requires very small sample volumes, allowing it to be readily miniaturized for developing a portable and easy-to-use diagnostic tool. The system can also be adapted for detecting a wide variety of other antibodies.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.