We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New High-Throughput Microscopy and Machine Learning Systems Identify and Classify DNA Repair Factors

By LabMedica International staff writers
Posted on 04 Feb 2022

A team of researchers has developed high-throughput microscopy and machine learning systems that can identify and classify DNA repair factors. More...

The highly sensitive method for visualizing DNA repair mechanisms at work was developed by researchers at Massachusetts General Hospital (Boston, MA, USA) who also used the technique to identify nine new proteins that are involved in DNA repair. The finding can help researchers develop new cancer drugs, as well as methods for improving the effectiveness of existing therapies.

The DNA that lies tightly coiled in nearly every human cell is subjected to thousands of insults and injuries from within and without daily, which is why the human body has evolved multiple highly effective mechanisms for repairing DNA damage. DNA damage repair is a double-edged sword: When it goes awry, it can lead to diseases such as cancer and degenerative motor disorders, but it can also be exploited to treat many forms of cancer using drugs that interfere with DNA’s ability to fix itself, thereby causing cancerous cells to stop replicating and die. Previous studies of DNA repair mechanisms were performed using systems developed by biochemists to purify proteins, but these systems have relatively low yields or “throughput.

The new technique is a combination of high-throughput microscopy and machine learning. The investigators first developed a high-throughput microscopy test to analyze how proteins are attracted to or excluded from double-strand DNA breaks. With this system they generated a library of 384 mostly unknown factors and were able to identify which of these proteins are called into action when DNA damage occurs. They then performed a proof-of-principle study, following one specific factor labeled PHF20 that is kept away from the site of DNA damage, and discovered that PHF20 is excluded because it can interfere with recruitment of another critical DNA repair factor labeled 53BP1. The systems developed by the researchers could help improve the treatment of breast and ovarian cancers caused by mutations in the cancer susceptibility genes BRCA1 and BRCA2. These cancers are treated with a class of drugs known as PARP inhibitors that work by inhibiting a particular DNA repair factor.

“We have in place exquisite mechanisms to repair DNA breaks, and when those fail, we end up with disease. We accumulate genomic instability, we accumulate mutations, and many diseases happen because of the inability of cells to repair DNA,” said Raul Mostoslavsky, MD, PhD, scientific co-director of the MGH Cancer Center and the Laurel Schwartz Professor of Oncology (Medicine) at Harvard Medical School.

Related Links:
Massachusetts General Hospital 


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
New
ESR Analyzer
TEST1 2.0
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.