We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Predicting Age by Profiling Circulating Plasma Proteins

By LabMedica International staff writers
Posted on 16 Dec 2019
It has been shown to be possible to calculate the age of an individual by measuring levels of various proteins circulating in the blood plasma.

Aging is a predominant risk factor for several chronic diseases that limit longevity, and mechanisms that regulate aging have become increasingly recognized as potential therapeutic targets.

To evaluate biochemical factors linked to aging, investigators at Stanford University (Palo Alto, CA, USA) measured 2,925 plasma proteins from 4,263 young adults to nonagenarians (18–95 years old). More...
Some of the samples came from the LonGenity study, which had accumulated blood samples from a cohort of exceptionally long-lived Ashkenazi Jews.

The investigators measured the levels of roughly 3,000 proteins in plasma samples from each individual. Results revealed 1,379 proteins with levels that varied significantly with participants' age. By employing a new bioinformatics approach that uncovered marked non-linear alterations in the human plasma proteome with age, the investigators were able to define a reduced set of 373 proteins that was sufficient to predict participants' ages with considerable accuracy.

The investigators also discovered waves of changes in the distribution of plasma proteins in the fourth, seventh, and eighth decades of life (roughly at ages 34, 60, and 78), which reflected distinct biological pathways and revealed differential associations with the genome and proteome of age-related diseases and phenotypic traits.

"We have known for a long time that measuring certain proteins in the blood can give you information about a person's health status - lipoproteins for cardiovascular health, for example," said senior author Dr. Tony Wyss-Coray, professor of neurology and neurological sciences, at Stanford University. "But it has not been appreciated that so many different proteins' levels - roughly a third of all the ones we looked at - change markedly with advancing age."

The study was published in the December 5, 2019, online edition of the journal Nature Medicine.

Related Links:
Stanford University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.