We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Genetic Diagnosis of Opitz C Syndrome Advanced

By LabMedica International staff writers
Posted on 16 Apr 2019
Opitz C syndrome (OCS), an ultra-rare disease that causes serious physical and intellectual disabilities, has a heterogeneous genetic base that makes its medical diagnostic and therapeutic intervention difficult.

Trigonocephaly, due to the premature fusion of the metopic suture, is one of its main characteristics and, while it is not exclusive, it has become mandatory and definitional of OCS. More...
However, despite sharing several clinical manifestations, this disease does not show a genetic base shared by the affected people, and its hereditary transmission model is still unknown.

Scientists from the University of Barcelona (Spain) and the Research Institute Sant Joan de Déu (Barcelona, Spain) have investigated the genetic diagnosis of OCS. They were part of an international scientific collaboration that has been determining in the genetic diagnosis of other cases with severe affectations in the neuro-development that had been considered to be Opitz C syndrome.

In particular, the team has participated in the identification of new genetic mutations associated with Diphthamide biosynthesis protein 1 (DPH1) syndrome, a minority disease with a low prevalence among population in patients of two different families from Malta and Yemen. The joint collaboration analyzed the effect of the new mutations in the DPH1 gene that were identified in these patients and the ones that were previously mentioned in the scientific bibliography. Through the application of a biochemical trial and a computational model of the DPH1 protein and its variants, they could evaluate the enzymatic ability of the natural and mutated ways of this protein, related to the embryogenesis and organogenesis procedures.

The authors noted that whole exome sequencing (WES) is a powerful tool that will allow to identify the molecular basis of most (if not all) of the cases initially diagnosed with the OCS phenotype, as has been achieved in the three recent cases and thus, to re-diagnose each patient according with the particular molecular cause of the disease. The study was published on March 7, 2019, in the journal Expert Opinion on Orphan Drugs.

Related Links:
University of Barcelona
Research Institute Sant Joan de Déu


Gold Member
Hybrid Pipette
SWITCH
Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Gel Cards
DG Gel Cards
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.