We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Nanolock Sensor Detects Cancer Driver Mutation

By LabMedica International staff writers
Posted on 24 Jul 2017
Print article
Researchers have developed an accurate and sensitive “nanolock-nanopore” method that successfully diagnosed a known cancer driver mutation with results at the level of single DNA molecules in tumor tissues of thyroid cancer patients. The method can be adapted to detect a broad spectrum of both transversion and transition mutations, with applications from early diagnostics to individualized targeted therapy and monitoring.

Cancer driver mutations assist in the initiation and progression of cancers, many of which can be stopped in time if caught early enough. The current method for detecting driver mutations is real-time PCR, but it is not accurate enough to detect these genetic changes reliably. Researchers have developed methods to read the genetic sequence by moving it through a nanopore, but also this method is not accurate enough on its own.

Building on their previous work, Prof. Li-Qun Gu, of University of Missouri (Columbia, MO, USA), and colleagues sought a way to better pinpoint these mutations, and with single-molecule resolution. They developed and investigated their novel method using as a test case the known BRAF V600E mutation. The team has now found that mutant DNA carrying a nanolock undergoes a unique type of unzipping when it moves through the nanopore. Detecting this activity resulted in a highly accurate and sensitive nanopore fingerprint for the BRAF mutation in the thyroid cancer patients’ tumor tissue samples.

The researchers anticipate the approach, once integrated with a miniature high-throughput device, could enable PCR-free detection of various disease-causing mutations for diagnosis and prognosis.

The study, by Wang Y et al, was published July 5, 2017, in the journal ACS Sensors.

Related Links:
University of Missouri

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.