We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mass Spectrometry Identifies Bacterial and Yeast Isolates

By LabMedica International staff writers
Posted on 24 Jan 2013
Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is an automated molecular platform that can be used to identify pathogens. More...


The MALDI-TOF technique effectively circumvents many of the drawbacks of other methods and offers a rapid, straightforward, and inexpensive method to distinguish bacteria and yeasts isolates from human samples.

Scientists at the Mayo Clinic’s Department of Laboratory Medicine and Pathology (Rochester, MN, USA) have recently validated the use of MALDI-TOF in the clinical laboratory. Currently, they only perform MALDI-TOF MS analysis from isolated bacterial and yeast colonies, therefore clinical specimens continue to be plated to solid media and are observed for growth. They use the process referred to as the formic acid-based, direct on-plate preparation method and depending on room humidity, has a total preparation time of 10 to 20 minutes for 24 samples.

The Bruker Biotyper MALDI-TOF MS (Fällanden, Switzerland) system is used for routine identification of bacterial and yeast isolates from culture. The Bruker Biotyper system includes the Microflex LT/SH MS instrument and two software programs: FlexControl for acquisition of protein spectra and Biotyper real-time classification (RTC) for automated spectral analysis.

The team has evaluated 900 bacterial and yeast isolates, with an overall correct identification rate of 94.2% to the genus and 79.2% to the species levels. While genus level identification was above 90% for most of the evaluated organism groups, the lower species level identification percentage was primarily driven by the gram-positive cocci (69.5%). Some closely related bacterial species cannot be differentiated by MALDI-TOF MS, regardless of the system manufacturer. This technology cannot reliably distinguish Escherichia coli from Shigella species or Streptococcus pneumoniae from S. mitis group species.

Identification of unknown isolates by this technology is based on the acquisition of unique protein profiles from isolated colonies and comparison of this data to a library of reference spectra derived from well-characterized isolates. The Mayo scientists have shown that has shown that MALDI-TOF MS is a rapid and inexpensive method able to accurately identify isolates within minutes, compared to the more time-consuming methods associated with other automated microbial identification systems and the potentially subjective nature of classic biochemical analyses.

Related Links:

Mayo Clinic
Bruker



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.