We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Switch to CAD Technology Greatly Improves Lab-On-A-Chip Capability

By LabMedica International staff writers
Posted on 12 May 2014
The lab-on-a-chip holds potential for reducing cost of medical diagnostics while expanding access to health care. More...
Now scientists have developed computer aided design (CAD) software to enable far more than one or two tests on a single chip.

In the near future healthcare professionals may be able to routinely run clinical lab tests almost instantly on a digital microfluidic machine about the size of credit card. These lab-on-a-chips (LOCs) would not only be quick—results available in minutes—but also inexpensive and portable. They could be used at point-of-care, and even at long distance from the nearest medical clinic.

But as powerful as they may be, they could be far better, said Shiyan Hu, associate professor of electrical and computer engineering at Michigan Technological University (MTU; Houghton, MI, USA). Current LOCs can generally run no more than a test or two because the chips are designed manually. If the LOCs were made using computer-aided design (CAD), you could run dozens of tests with, for example, a single drop of blood. “In a very short time, you could test for many conditions,” said Prof. Hu; “This really would be an entire lab on a chip.” With PhD student Chen Liao, Prof. Hu has taken the first step. “We have developed software to design the hardware,” he said.

Their work, described in, and featured on the cover of, the March, 2014, edition of the journal IEEE Transactions on Nanobiosciences, focuses on routing a droplet of blood or other fluid through each test on the chip efficiently while avoiding contamination. A key part in LOC CAD is physical-level synthesis. It includes the LOC placement and routing, where placement is to determine the physical location and the starting time of each operation, and routing is to transport each droplet from the source to the destination.

“It has taken us four years to do the software, but to manufacture the LOC would be inexpensive,” said Prof. Hu; “The materials are very cheap, and the results are more accurate than a conventional lab’s.” Prof. Hu plans to fabricate their own biochip using their software.

Related Links:

Michigan Technological University



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.