We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Compact Device Developed for Sorting Cells and Biomolecules

By LabMedica International staff writers
Posted on 20 Nov 2017
Print article
Image: The developed sorting chip for analyzing and isolating cells in a blood sample (Photo courtesy of the Fraunhofer Institute of Laser Technology).
Image: The developed sorting chip for analyzing and isolating cells in a blood sample (Photo courtesy of the Fraunhofer Institute of Laser Technology).
Biomolecules and cells circulating in the blood carry diagnostic information, the analysis of which makes highly effective, individualized therapies possible.

A microchip-based diagnostic device has been developed that analyzes and sorts clinically relevant biomolecules and cells in a blood test with light. As a result, physicians can make early diagnoses, for example, of tumor and cardiovascular diseases and initiate patient-specific therapies with great efficacy.

Biomedical engineers at the Fraunhofer Institute of Laser Technology (Aachen, Germany) have developed the “AnaLighter” which is a compact diagnostic device for sorting cells and biomolecules. Its technological core is based on an optically switchable microfluidic chip whose optical sensors and switches are connected to the chip via optical fibers. The “Microchip Based Fluorescence Activated Cell Sorter” (μFACS) functions in the following way: The biomolecules and cells to be analyzed by fluorescence are guided through a microfluidic channel and focused hydrodynamically on a cross-section of 10 μm at the site of the optical measurement. Laser light from an optical fiber stimulates the analyte in the microfluidic channel to fluoresce.

Then, micro-optics focus the laser light emerging from the fiber into the microfluidic channel, collect the fluorescent light generated there and guide it through optical fibers to the photodetector. This fiber-optic design allows a significant reduction in the installation space and makes the μFACS more rugged compared to the prior state-of-the-art. The “AnaLighter technology” is, therefore, ideally suited for automated diagnostic applications in 24/7 operation.

The spectrally separated detection channels of the “AnaLighter” can simultaneously detect different marker molecules in the blood. In such multiplex diagnostics, these marker molecules from a blood sample are specifically bound by a mixture of microparticles, each particle species binding exactly one molecule species to be detected. The μFACS technology can also process water-in-oil emulsions in addition to aqueous solutions in contrast to conventional FACS systems.

The detection of bound marker molecules is encoded by a characteristic fluorescence label and its signal measured by one of the 16 detection channels. Such multiplex diagnosis can detect up to 16 different disease markers with only one measurement run. In annual routine checks, a general practitioner can detect a large number of possible diseases early in the course of a single blood test in order to prevent widespread diseases, such as cardiovascular disease. The sorting function also makes it possible to separate out the appropriate candidates from the others during screening, in order to dispose of the relevant gene sequences in for example genetically modified variants. The device was demonstrated at the COMPAMED 2017 held November 13-16, 2017, in Düsseldorf, Germany.

Related Links:
Fraunhofer Institute of Laser Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Cancer Mutation Profiling Liquid Kit
OncoScreen Plus

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.