We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Inhibiting Fibronectin Polymerization Reduces Injury to Cardiac Muscle

By LabMedica International staff writers
Posted on 24 Apr 2018
Working with a mouse model of human heart disease, researchers showed that interfering with fibronectin (FN) polymerization or its genetic deletion in fibroblasts would attenuate cardiac myofibroblasts (MF), fibrosis, and improve cardiac function following heart attack related injury.

Fibronectin is a high-molecular weight glycoprotein of the extracellular matrix that binds to integrin receptor proteins. More...
Similar to integrins, fibronectin binds extracellular matrix components such as collagen, fibrin, and heparan sulfate proteoglycans. Fibronectin exists as a protein dimer, consisting of two nearly identical monomers linked by a pair of disulfide bonds. The fibronectin protein is produced from a single gene, but alternative splicing of its pre-mRNA leads to the creation of several isoforms. Fibronectin plays a major role in cell adhesion, growth, migration, and differentiation, and it is important for processes such as wound healing and embryonic development. Altered fibronectin expression, degradation, and organization have been associated with a number of pathologies, including cancer and fibrosis.

Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MF) following cardiac injury. To better understand the role of FN polymerization, investigators at Cincinnati Children's Hospital Medical Center (OH, USA) used the synthetic polymerization inhibitor peptide pUR4 to assess the impact of blocking FN polymerization on pathologic cellular features such as proliferation, migration, extracellular matrix (ECM) deposition, and associated mechanisms.

To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wildtype (WT) mice received daily intraperitoneal injections of either pUR4 or a control peptide (III-11C) immediately after cardiac surgery, for seven consecutive days. Mice were analyzed seven days post-injury to assess myofibroblast markers and inflammatory cell infiltration, or four weeks post-injury, to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Further, inducible, fibroblast-restricted, FN gene ablated mice were utilized to evaluate cell specificity of FN expression and polymerization in the heart.

Results published in the April 13, 2018, online edition of the journal Circulation revealed that pUR4 administration on activated MF reduced FN and collagen deposition into the ECM and attenuated cell proliferation, likely mediated through decreased c-myc signaling. The pUR4 peptide also enhanced fibroblast migration accompanied by increased beta-1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase (FAK) protein. Daily administration of pUR4 in vivo for seven days following injury significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly lessened myocardial dysfunction, pathologic cardiac remodeling, and fibrosis up to four weeks post-injury. Finally, inducible ablation of FN in fibroblasts post-injury resulted in significant functional cardio-protection with reduced hypertrophy and fibrosis.

"Our data are a strong proof of principle and the first to show that inhibiting fibronectin polymerization preserves heart function, reduces left ventricle remodeling and limits formation of fibrotic connective tissue," said senior author Dr. Burns Blaxall, director of translational research in the heart institute at Cincinnati Children's Hospital Medical Center.

Related Links:
Cincinnati Children's Hospital Medical Center


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Gold Member
Auto Hematology Analyzer
DH-88CS [H]
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.