We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Editing Used to Repair Mutations in Embryos

By LabMedica International staff writers
Posted on 17 Aug 2017
The CRISPR/Cas9 gene editing tool was used to correct a mutation in the DNA of a human embryo, and the problem of mosaicism was avoided by carrying out the gene editing step while the embryo was still a single-cell fertilized egg.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. More...
CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at Oregon Health & Science University (Portland, USA) sought to investigate human gamete and embryo DNA repair mechanisms activated in response to CRISPR/Cas9-induced double-strand breaks (DSBs). Their intent was to demonstrate the proof-of-principle that heterozygous gene mutations could be corrected in human gametes or early embryos.

In the August 2, 2017, online edition of the journal Nature they described the correction of the heterozygous MYBPC3 mutation - the cause of hypertrophic cardiomyopathy (HCM), a common genetic heart disease that can cause sudden cardiac death and heart failure - in human preimplantation embryos. This repair depended on precise CRISPR/Cas9-based targeting accuracy and high homology-directed repair efficiency that was obtained by activating an endogenous, germline-specific DNA repair response. Induced DSBs at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template.

By modulating the cell cycle stage at which the DSB was induced, the investigators were able to avoid mosaicism in cleaving embryos and achieved a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The solution to the mosaicism problem was to minimize their occurrence by the co-injection of sperm and CRISPR/Cas9 components into metaphase II oocytes.

"Every generation on would carry this repair because we have removed the disease-causing gene variant from that family's lineage," said senior author Dr. Shoukhrat Mitalipov, director of the Center for Embryonic Cell and Gene Therapy at Oregon Health & Science University. "By using this technique, it is possible to reduce the burden of this heritable disease on the family and eventually the human population."

Related Links:
Oregon Health & Science University


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
Pipette
Accumax Smart Series
New
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.