We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Mutation Leads to Hypertrophic Cardiomyopathy

By LabMedica International staff writers
Posted on 21 Jun 2017
A team of heart disease researchers explained how a mutation in the gene coding for the obscurin family of proteins leads to the development of an enlarged heart, a condition known as hypertrophic cardiomyopathy.

Obscurins are cytoskeletal proteins with structural and regulatory roles encoded by the OBSCN gene. More...
Mutations in OBSCN are associated with the development of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Specifically, the R4344Q mutation present in immunoglobulin domain 58 (Ig58) of the obscurin protein was the first to be linked with the development of HCM.

In the current study, investigators at the University of Maryland School of Medicine (Baltimore, USA) used a genetically engineered mouse model to assess the effects of the R4344Q mutation in vivo. In the mouse model, mutant obscurins were expressed and incorporated normally into sarcomeres.

A sarcomere is the basic unit of striated muscle tissue. Sarcomeres are composed of long, fibrous proteins as filaments that slide past each other when a muscle contracts or relaxes. Two of the important proteins are myosin, which forms the thick filament, and actin, which forms the thin filament. Myosin has a long, fibrous tail and a globular head, which binds to actin.

In this study, the genetically engineered mice were maintained in three groups: one group experienced no stress, one group experienced moderate stress, and one group experienced significant stress. Results published in the June 7, 2017, online edition of the journal Science Advances revealed that in the mice maintained with little or no stress, the R4344Q mutation resulted in Ca2+ deregulation and spontaneous arrhythmia, whereas in the presence of chronic, pathological stress, it led to cardiac remodeling and dilation that produced hearts that were scarred and ineffective.

At the molecular level, structural analysis revealed that the R4344Q mutation altered the distribution of electrostatic charges over the Ig58 surface of the obscurin protein, thus interfering with its binding capabilities.

"This study gives us new information about the involvement of obscurins in the mechanics of heart disease," said senior author Dr. Aikaterini Kontrogianni-Konstantopoulos, professor of biochemistry and molecular biology at the University of Maryland School of Medicine. "It suggests that people carrying a mutated version of OBSCN may develop heart disease. This work could eventually lead to targeted therapies for people who have OBSCN mutations."

Related Links:
University of Maryland School of Medicine


Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
Hemodynamic System Monitor
OptoMonitor
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.