We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Protein Slows Cancer with Cell Cycle Interference

By LabMedica International staff writers
Posted on 05 Jun 2017
A team of molecular biologists has identified a pathway that mediates mature microRNA (miRNA) decay - a process of undoing gene silencing that is less well understood than the processes that mediate miRNA biosynthesis.

MiRNAs are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complement between miRNAs and their targets. More...
Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Investigators at the University of Rochester Medical Center (NY, USA) furthered the understanding of miRNA decay when they identified the enzyme Tudor-SN, an endonuclease that interacted with the RNA-induced silencing complex. Tudor-SN was found to target miRNAs at CA (cytosine- adenine) and UA (uracil-adenine) dinucleotides located more than five nucleotides from miRNA ends. Tudor-SN-mediated miRNA decay removed miRNAs that silenced genes encoding proteins that were critical for the G1-to-S phase transition in the cell cycle.

The investigators reported in the May 26, 2017, issue of the journal Science that inhibiting TSN-mediated miRNA decay by CRISPR-Cas9 knockout of TSN slowed cell cycle progression by up-regulating a cohort of miRNAs that interfered with the mRNAs that encoded proteins critical for the G1-to-S phase transition. Thus, removal of Tudor-SN from human cells increased the levels of dozens of microRNAs. This increase in the number of inhibitory molecules resulted in the shutdown of genes that encouraged cell growth by regulating the cell cycle.

"We know that Tudor-SN is more abundant in cancer cells than healthy cells, and our study suggests that targeting this protein could inhibit fast-growing cancer cells," said first author Dr. Reyad A. Elbarbary, research assistant professor of biochemistry and biophysics at the University of Rochester School of Medical Center.

Related Links
University of Rochester Medical Center


New
Gold Member
Latex Test
SLE-Latex Test
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
PlGF Test
Quidel Triage PlGF Test
New
PSA Assay
CanAg PSA EIA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.