We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Protein Slows Cancer with Cell Cycle Interference

By LabMedica International staff writers
Posted on 05 Jun 2017
A team of molecular biologists has identified a pathway that mediates mature microRNA (miRNA) decay - a process of undoing gene silencing that is less well understood than the processes that mediate miRNA biosynthesis.

MiRNAs are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complement between miRNAs and their targets. More...
Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Investigators at the University of Rochester Medical Center (NY, USA) furthered the understanding of miRNA decay when they identified the enzyme Tudor-SN, an endonuclease that interacted with the RNA-induced silencing complex. Tudor-SN was found to target miRNAs at CA (cytosine- adenine) and UA (uracil-adenine) dinucleotides located more than five nucleotides from miRNA ends. Tudor-SN-mediated miRNA decay removed miRNAs that silenced genes encoding proteins that were critical for the G1-to-S phase transition in the cell cycle.

The investigators reported in the May 26, 2017, issue of the journal Science that inhibiting TSN-mediated miRNA decay by CRISPR-Cas9 knockout of TSN slowed cell cycle progression by up-regulating a cohort of miRNAs that interfered with the mRNAs that encoded proteins critical for the G1-to-S phase transition. Thus, removal of Tudor-SN from human cells increased the levels of dozens of microRNAs. This increase in the number of inhibitory molecules resulted in the shutdown of genes that encouraged cell growth by regulating the cell cycle.

"We know that Tudor-SN is more abundant in cancer cells than healthy cells, and our study suggests that targeting this protein could inhibit fast-growing cancer cells," said first author Dr. Reyad A. Elbarbary, research assistant professor of biochemistry and biophysics at the University of Rochester School of Medical Center.

Related Links
University of Rochester Medical Center


New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.