We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cryomicroscopy Enhances Mapping of Cystic Fibrosis Protein

By LabMedica International staff writers
Posted on 05 Apr 2017
Print article
Image: The molecular structure of the human cystic fibrosis protein, which controls the flow of crucial ions in and out of cells (Photo courtesy of the Laboratory of Membrane Biology and Biophysics at The Rockefeller University).
Image: The molecular structure of the human cystic fibrosis protein, which controls the flow of crucial ions in and out of cells (Photo courtesy of the Laboratory of Membrane Biology and Biophysics at The Rockefeller University).
A recent paper detailed the three-dimensional (3D) structure of cystic fibrosis transmembrane conductance regulator, the protein responsible for the genetic disorder cystic fibrosis (CF).

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Investigators at The Rockefeller University used electron cryomicroscopy (cryo-EM) to determine the three-dimensional (3D) structure of dephosphorylated human CFTR at a resolution of 3.9 Angstroms.

Researchers have historically relied on NMR and X-ray diffraction techniques to determine the structures of molecular complexes and proteins that play a role in the causes of various disease states. Structural information about a variety of medically important proteins and drugs has been obtained by these methods. Cryo-EM is a complementary analytical technique that provides near-atomic resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional (3D) model of the sample.

Results published in the March 23, 2017, issue of the journal Cell revealed that the structure of human CFTR was quite similar to that determined previously for the zebrafish. This close resemblance reinforced its relevance for understanding CFTR function. The human CFTR structure generated by this study revealed a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. In addition, the three-dimensional (3D) map showed a feature distinguishing CFTR from all other ABC transporters: the helix-loop transition in transmembrane helix eight, which likely forms the structural basis for CFTR’s channel function.

"With these detailed new reconstructions, we can begin to understand how this protein functions normally, and how errors within it cause cystic fibrosis," said senior author Dr. Jue Chen, professor of membrane biology and biophysics at The Rockefeller University. "We now know that the conclusions we drew from our previous work in zebrafish also apply to us."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.