We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Inhibiting Glutamine Metabolism Blocks Growth of Some Colorectal Tumors

By LabMedica International staff writers
Posted on 01 Aug 2016
Cancer researchers have found a way to block growth of colorectal tumors that express a mutation, which enables the cancer cells to use glutamine as their primary energy source.

Cancer cells often require glutamine for growth, thereby distinguishing them from most normal cells. More...
Investigators at Case Western Reserve University (Cleveland, OH, USA) searched for the molecular signaling pathway that controlled glutamine metabolism in colorectal cancer cells with and without a mutation in the PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) gene.

The investigators reported their findings in the June 20, 2016, online edition of the journal Nature Communications. They found that PIK3CA mutations reprogrammed glutamine metabolism by upregulating production of the enzyme glutamate pyruvate transaminase 2 (GPT2) in colorectal cancer (CRC) cells, making them more dependent on glutamine. Compared with isogenic wild-type cells, PIK3CA mutant CRCs converted substantially more glutamine to alpha-ketoglutarate to replenish the tricarboxylic acid cycle and generate ATP.

In addition, the investigators found that the compound aminooxyacetate, which inhibits the enzymatic activity of aminotransferases including GPT2, suppressed xenograft tumor growth of CRCs with PIK3CA mutations, but not with wild-type PIK3CA.

Senior author Dr. Zhenghe Wang, professor of genetics and genome sciences at Case Western Reserve University, said, "In layman's terms, we discovered that colon cancers with PIK3CA oncogenic mutations are addicted to glutamine, a particular nutrient for cancer cells. We also demonstrated that these cancers can be starved to death by depriving glutamine with drugs."

Related Links:
Case Western Reserve University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
New
Hand-Held Immunofluorescence Analyzer
WS-Si1500
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.