We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Secondary Bile Acids in the Large Intestine Inhibit Clostridium difficile Growth

By LabMedica International staff writers
Posted on 17 Jan 2016
Secondary bile acids that result from bacterial metabolism in the large intestine inhibit the growth of the pathogenic bacterium Clostridium difficile, but when bile acid levels are disrupted by antibiotic treatment, C. More...
difficile is able to flourish.

Primary bile acids are those synthesized by the liver, while secondary bile acids result from bacterial actions in the colon. So far inhibition of C. difficile growth by secondary bile acids had only been shown in vitro. To understand how this mechanism works in vivo, investigators at North Carolina State University (Raleigh, USA) and the University of Michigan (Ann Arbor, USA) used targeted bile acid metabolomics to determine the physiologically relevant concentrations of primary and secondary bile acids present in the mouse small and large intestinal tracts and how these impacted C. difficile dynamics. Metabolomics is the study of chemical processes involving metabolites, while the metabolome represents the collection of all metabolites in a biological cell, tissue, organ, or organism that are the end products of cellular processes.

The investigators treated mice with a variety of antibiotics to create distinct microbial and metabolic (bile acid) environments and directly tested their ability to support or inhibit C. difficile spore germination and outgrowth.

They reported in the January 6, 2016, online edition of the journal mSphere that susceptibility to C. difficile in the large intestine was observed only after specific broad-spectrum antibiotic treatment (cefoperazone, clindamycin, and vancomycin) and was accompanied by a significant loss of secondary bile acids (deoxycholate, lithocholate, ursodeoxycholate, hyodeoxycholate, and omega-muricholate). These changes were correlated to the loss of specific microbiota community members, the Lachnospiraceae and Ruminococcaceae families.

Additionally, the investigators found that the physiological concentrations of secondary bile acids present in the large intestine during C. difficile resistance were able to inhibit spore germination and outgrowth in vitro. Conditions in the large intestine were different from those in the small intestine, since C. difficile spore germination and outgrowth were supported constantly in the mouse small intestine regardless of antibiotic perturbation.

"We know that within a healthy gut environment, the growth of C. difficile is inhibited," said senior author Dr. Casey Theriot, assistant professor of infectious disease at North Carolina State University. "But we wanted to learn more about the mechanisms behind that inhibitory effect. These findings are a first step in understanding how the gut microbiota regulates bile acids throughout the intestine. Hopefully they will aid the development of future therapies for C. difficile infection and other metabolically relevant disorders such as obesity and diabetes."

Related Links:
North Carolina State University
University of Michigan



Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Portable Electronic Pipette
Mini 96
Clinical Chemistry System
P780
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.