We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Presenilin Gene Mutation Linked to Familial form of Alzheimer's Disease

By LabMedica International staff writers
Posted on 24 Mar 2015
Results obtained in studies using a genetically engineered mouse model of hereditary Alzheimer's disease pointed to the importance of reduced gamma-secretase activity caused by a mutation in the presenilin (PSEN1) gene.

Most cases of Alzheimer's disease are not hereditary. More...
However, there is a small subset of cases that have an earlier age of onset and have a strong genetic element. In patients suffering from this form of Alzheimer's disease (autosomal dominant hereditary), mutations in the presenilin proteins (PSEN1 and PSEN2) or the amyloid precursor protein (APP) can be found. The majority of these cases carry mutant presenilin genes. An important factor in the disease process in AD is the accumulation of amyloid beta (Abeta) protein. To form Abeta, APP must be cut by two enzymes, beta-secretase and gamma-secretase. Presenilin is the sub-component of gamma-secretase that is responsible for the cutting of APP. Individuals with a hereditary form of AD over produce type 42 amyloid beta protein (Abeta42), which readily accumulates in the amyloid plaques that characterize the disease.

Investigators at Harvard Medical School (Boston, MA, USA) generated PSEN1 knockin (KI) mice carrying the familial Alzheimer’s disease (FAD) mutation L435F or C410Y.

They reported in the March 4, 2015, online edition of the journal Neuron that KI mice homozygous for either mutation recapitulated the phenotypes of mice that had been genetically engineered to completely lack PSEN1. Neither mutation altered PSEN1 mRNA expression, but both abolished gamma-secretase activity. Heterozygosity for the KI mutation decreased production of Abeta40 and Abeta42, increased the Abeta42/Abeta40 ratio, and increased Abeta deposition. In addition, the L435F mutation impaired hippocampal synaptic plasticity and memory and caused age-dependent neurodegeneration in the aging cerebral cortex. Collectively, the findings revealed that FAD mutations could cause complete loss of presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.

"This is a very striking example where we have mutations that inactivate gamma-secretase function and yet they trigger an array of features that resemble Alzheimer's disease, notably synaptic and cognitive deficits as well as neurodegeneration," said senior author Dr. Raymond Kelleher, professor of neurology at Harvard Medical School. "This study is the first example of a mouse model in which a familial Alzheimer's mutation is sufficient to cause neurodegeneration. The new model provides an opportunity that we hope will help with the development of therapies focusing on the devastating neurodegenerative changes that occur in the disease."

Related Links:

Harvard Medical School



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.