We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Oxygen Deprivation Activates Tumor Survival Genes in Solid Tumors

By LabMedica International staff writers
Posted on 15 Mar 2015
Print article
Image: Photomicrograph of mouse embryonic cells that have been programmed to overexpress Higd1a protein (shown in green). This protein slows down the metabolism of cancer cells, allowing them to hibernate and survive long-term (Photo courtesy of the University of California, San Francisco).
Image: Photomicrograph of mouse embryonic cells that have been programmed to overexpress Higd1a protein (shown in green). This protein slows down the metabolism of cancer cells, allowing them to hibernate and survive long-term (Photo courtesy of the University of California, San Francisco).
A possible new approach for treating reoccurring tumors would target the protein hypoxia-inducible gene domain family member 1A (Higd1a).

Higd1a is a survival factor induced by hypoxia-inducible factor 1 (HIF-1). HIF-1 regulates many responses to oxygen deprivation but is frequently absent in viable cells within the hypoxic perinecrotic regions of solid tumors. Cells in this region are deprived of both oxygen and nutrients, which promote their resistance to therapy.

Since Higd1a decreases tumor growth but promotes tumor cell survival in vivo, investigators at the University of California, San Francisco (USA) have examined how the HIGD1A gene becomes activated in the absence of its usual inducer, HIF-1.

They reported in the February 12, 2015, online edition of the journal Cell Reports that the human HIGD1A gene was located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the HIGD1A gene promoter was differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells were confronted with glucose deprivation, DNA methyltransferase activity was inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Under these conditions Higd1a protein was available to interact with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK (AMP-dependent kinase) activity, and lower cellular ROS (reactive oxygen species) levels.

Studies conducted in vivo with tumor cells that had been genetically engineered to overexpress HIGD1A, demonstrated dramatically repressed tumor growth but significantly enhanced overall tumor survival, and these effects were even seen in mice that lacked the HIF-1 protein.

Based on these results, the authors suggested that, "Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology."

Related Links:

University of California, San Francisco


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.