We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Outcome of Sports Events May Depend on Circadian Rhythms

By LabMedica International staff writers
Posted on 10 Feb 2015
Print article
Image:  Graphical summary of a new study showing that athletic performance (and therefore sport event outcome) also depends on the circadian rhythms of individual athletes (Photo courtesy of University of Birmingham and Cell Press).
Image: Graphical summary of a new study showing that athletic performance (and therefore sport event outcome) also depends on the circadian rhythms of individual athletes (Photo courtesy of University of Birmingham and Cell Press).
According to a new study, the outcome of sporting events may depend on how well the timing of the match aligns with the internal biological clocks of the athletes, and so could change performance by the hour depending on what time it is for their inner clock.

The study, conducted by researchers at University of Birmingham (Birmingham, England), found that diurnal performance of competition-level athletes varied by as much as 26% over the course of the day. Those who would naturally sleep in gave their best performances hours later in the day than early birds. Athletes and coaches would do well to make note and adjust their schedules accordingly as much as possible, the researchers said.

"If a 1% difference in performance can make the difference between 1st place and 4th place in a 100 meter race and actually win you the gold medal at the Olympics, then imagine what a 26% difference in your performance could give," said principal investigator Dr. Roland Brandstaetter. There were earlier reports that suggested that athletes' personal best performances are generally in the evening. But those studies did not account for whether those athletes were of night “owl” or morning “lark” phenotypes. While an individual's circadian phenotype often does shift from childhood into adolescence and adulthood, there are real physiological differences between people based on their natural sleep/wake patterns. These differences result in disparities between their biological clocks and how they entrain to exogenous cues, such as the environmental light/dark cycle and social factors.

In this study, a novel approach was used to characterize the circadian phenotypes of more than 120 athletes. Then 20 athletes were selected representing early, intermediate, and late phenotypes and tested their cardiovascular endurance in a standard fitness test at 6 times of day.

The fitness tests revealed considerable diurnal variation in individual performance. Rather than time-of-day, the best predictor of how well those groups performed at a given hour was the amount of time elapsed since their entrained awakening (i.e., the time since they would have woken up if left to their own devices, without an alarm clock). While an early riser may be at his or her best in the early afternoon, a late riser hits his or her peak much later at night.

The researchers concluded that “determination of an athlete's personal best performance requires consideration of circadian phenotype, performance evaluation at different times of day, and analysis of performance as a function of time since entrained awakening.” This would also be relevant for non-athletic performance – "Obtaining a personal best performance is on everyone's agenda, but how to do it, now that is a different question," said co-author Elise Facer-Childs, and suggested that people would be well-advised to shift significant attention from the clock on the wall to the one that's ticking inside.

The study, by Facer-Childs E. and Brandstaetter R., was published January 29, 2015, in the Cell Press journal Current Biology.

Related Links:

University of Birmingham


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.