We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Nearly Transparent Mice Offers Potential of Whole-Organism Imaging

By LabMedica International staff writers
Posted on 23 Nov 2014
Print article
Image: Mouse kidneys, liver, and pancreas imaged after treatment with a variety of protocols: a saline solution, Scale, SeeDB (see deep brain), CUBIC, and carotid body (CB) perfusion (which was used in this study) (Photo courtesy of RIKEN Quantitative Biology Center).
Image: Mouse kidneys, liver, and pancreas imaged after treatment with a variety of protocols: a saline solution, Scale, SeeDB (see deep brain), CUBIC, and carotid body (CB) perfusion (which was used in this study) (Photo courtesy of RIKEN Quantitative Biology Center).
Image: Using the protocol for immunostaining: Epithelial cells in the lung are visualized (highest resolution on the right) by immunostaining with the antibody to pan-cytokeratin (Photo courtesy of RIKEN Quantitative Biology Center).
Image: Using the protocol for immunostaining: Epithelial cells in the lung are visualized (highest resolution on the right) by immunostaining with the antibody to pan-cytokeratin (Photo courtesy of RIKEN Quantitative Biology Center).
Japanese researchers have developed a method that combines tissue decolorization and light-sheet fluorescent microscopy to take extremely detailed images of the interior of individual organs and even entire organisms. The research creates new possibilities for understanding the way organisms work—the “holy grail” of systems biology—by allowing scientists to create tissues and whole organisms transparent and then image them at extremely precise, single-cell resolution.

To achieve this feat, the researchers, from the RIKEN Quantitative Biology Center (Saitama, Japan), together with collaborators from the University of Tokyo (Japan), led by Dr. Hiroki Ueda, began with a technology called CUBIC (clear, unobstructed brain imaging cocktails and computational analysis), which they had previously used to image whole brains. Though brain tissue is lipid-rich, and thus susceptible to many clearance methods, other parts of the body contain many molecular subunits known as chromophores, which absorb light. One chromophore, heme, which forms part of hemoglobin, is present in most tissues of the body and blocks light. The group decided to focus on this issue and discovered, in a surprise finding, that the aminoalcohols included in the CUBIC reagent could elute the heme from the hemoglobin, and by doing so, make other organs dramatically more transparent.

Using the technology, the scientists captured images of mouse brains, hearts, lungs, kidneys, and livers, and then went on to attempt the technology on infant and adult mice, and discovered that in all instances they could get clear tissues. They used the technique of light-sheet fluorescent microscopy, which involves taking slices of tissues without having to actually cut into it, to gain three-dimensional (3-D) images of the organs. To assess the feasibility of the method, they examined the pancreases of diabetic and non-diabetic mice, and found distinct discrepancies in the isles of Langerhans, the structures in the pancreas that produce insulin.

Although these methods could not be used in living organisms, since they require the tissues to be fixed using reagents, they could, according to Kazuki Tainaka, the first author of the paper, be very useful for gaining new understanding of the 3D structure of organs and how certain genes are expressed in various tissues. He said, “We were very surprised that the entire body of infant and adult mice could be made nearly transparent by a direct transcardial CUBIC perfusion coupled with a two-week clearing protocol. It allowed us to see cellular networks inside tissues, which is one of the fundamental challenges in biology and medicine.”

According to Dr. Ueda, who led the research team, “This new method could be used for 3D pathology, anatomic studies, and immunohistochemistry of entire organisms. For example, it could be used to study how embryos develop or how cancer and autoimmune diseases develop at the cellular level, leading to a deeper understanding of such diseases and perhaps to new therapeutic strategies. It could lead to the achievement of one of our great dreams, organism-level systems biology based on whole-body imaging at single-cell resolution.”

Although this is a significant finding, more research is needed, according to the investigators. In the future, the group plans to make improvements to the microscopy method to allow for the rapid imaging of whole bodies of adult mice or larger samples such as human brains, and to apply this technology to better understand autoimmune and psychiatric diseases.

The research was published November 6, 2014, in the journal Cell.

Related Links:

RIKEN Quantitative Biology Center
University of Tokyo


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.