We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Findings Implicate Circular RNA in the Development of Neurodegenerative Diseases

By LabMedica International staff writers
Posted on 28 Sep 2014
A recent paper described new findings that shed light on the production and function of circular RNA molecules (circRNA) in animal neuronal tissue.

CircRNA is a type of noncoding RNA that, unlike linear RNA, forms a covalently closed continuous loop. More...
In circular RNA the 3' and 5' ends normally present in an RNA molecule have been joined together. This feature confers numerous properties to circular RNAs, many of which have only recently been identified. Though many of these circular RNAs arise from otherwise protein coding genes, circular RNAs produced in the cell have not been shown to code for proteins.

Investigators at The Hebrew University of Jerusalem (Israel) reported in the September 18, 2014, online edition of the journal Molecular Cell that animal circRNAs were generated co-transcriptionally and that their production rate was mainly determined by intronic sequences—filler DNA that separates coding regions on the chromosomes.

The investigators demonstrated that the process of circularization and that of normal splicing competed against each other, and that these mechanisms were tissue specific and conserved in animals. To further refine these findings, they concentrated on the gene for the protein muscleblind (muscleblind-like splicing regulator 1), which generates circularized RNA in flies and humans. They found that this circRNA (circMbl) and its flanking introns contained conserved muscleblind binding sites, which were strongly and specifically bound by muscleblind. Modulation of muscleblind levels strongly affected circMbl biosynthesis, and this effect was dependent on the muscleblind binding sites.

Since defects in muscleblind function have been linked to the severe degenerative disease myotonic dystrophy and since high levels of circRNAs are found in brain tissue, it may be that these molecules play a role in development of myotonic dystrophy and possibly other neurodegenerative diseases.

Senior author Dr. Sebastian Kadener, senior lecturer in biological chemistry at The Hebrew University of Jerusalem, said, "This research is significant from several perspectives. By mapping how circRNAs are produced, it helps advance our understanding of general molecular biology. In addition, it might be strongly relevant for understanding and eventually treating degenerative diseases both in muscle and the brain."

Related Links:

The Hebrew University of Jerusalem



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.