We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Naphthalene-Dipeptide Hydrogels Destroy Antibiotic-Resistant Bacterial Biofilms

By LabMedica International staff writers
Posted on 03 Sep 2014
Novel hydrogels derived from self-assembling dipeptides conjugated to naphthalene were shown to dissolve bacterial biofilms, which indicated considerable promise for use in constructing bacteria-resistant nanomaterial structures, biomaterials, and drug delivery devices.

Biofilm bacteria, which thrive on the surfaces of implants and catheters, are a major medical problem, as they are highly resistant to current therapeutic strategies. More...
To correct this problem, investigators at Queen's University (Belfast, United Kingdom) introduced a novel form of hydrogel based on ultrashort cationic self-assembled peptides bound to naphthalene.

Results published in the July 28, 2014, online edition of the journal Biomacromolecules revealed that lysine-conjugated variants displayed the greatest potency with 2% NapFFKK (K is the abbreviation for lysine) hydrogels significantly reducing viable Staphylococcus epidermidis biofilm by 94%. Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed that the gels possessed reduced cytotoxicity towards eukaryotic cells and caused only limited hemolysis of equine erythrocytes.

First author Dr. Garry Laverty, pharmacy lecturer at Queen's University, said, "When bacteria attach to surfaces, including medical implants such as hip replacements and catheters, they produce a jelly-like substance called the biofilm. This protective layer is almost impossible for current antibiotics to penetrate through. Therefore bacteria deep within this protective layer are resistant as they remain unexposed to the therapy. They grow and thrive on surfaces to cause infections that are very difficult to treat. The only option is often to remove the medical implant leading to further pain and discomfort for the patient. Our gels would prevent this. Our gels are unique as they target and kill the most resistant forms of hospital superbugs. It involves the use of gels composed of the building blocks of natural proteins, called peptides, the same ingredients that form human tissue. These molecules are modified slightly in the laboratory to allow them to form gels that will rapidly kill bacteria."

Related Links:

Queen's University



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.