We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Naphthalene-Dipeptide Hydrogels Destroy Antibiotic-Resistant Bacterial Biofilms

By LabMedica International staff writers
Posted on 03 Sep 2014
Novel hydrogels derived from self-assembling dipeptides conjugated to naphthalene were shown to dissolve bacterial biofilms, which indicated considerable promise for use in constructing bacteria-resistant nanomaterial structures, biomaterials, and drug delivery devices.

Biofilm bacteria, which thrive on the surfaces of implants and catheters, are a major medical problem, as they are highly resistant to current therapeutic strategies. More...
To correct this problem, investigators at Queen's University (Belfast, United Kingdom) introduced a novel form of hydrogel based on ultrashort cationic self-assembled peptides bound to naphthalene.

Results published in the July 28, 2014, online edition of the journal Biomacromolecules revealed that lysine-conjugated variants displayed the greatest potency with 2% NapFFKK (K is the abbreviation for lysine) hydrogels significantly reducing viable Staphylococcus epidermidis biofilm by 94%. Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed that the gels possessed reduced cytotoxicity towards eukaryotic cells and caused only limited hemolysis of equine erythrocytes.

First author Dr. Garry Laverty, pharmacy lecturer at Queen's University, said, "When bacteria attach to surfaces, including medical implants such as hip replacements and catheters, they produce a jelly-like substance called the biofilm. This protective layer is almost impossible for current antibiotics to penetrate through. Therefore bacteria deep within this protective layer are resistant as they remain unexposed to the therapy. They grow and thrive on surfaces to cause infections that are very difficult to treat. The only option is often to remove the medical implant leading to further pain and discomfort for the patient. Our gels would prevent this. Our gels are unique as they target and kill the most resistant forms of hospital superbugs. It involves the use of gels composed of the building blocks of natural proteins, called peptides, the same ingredients that form human tissue. These molecules are modified slightly in the laboratory to allow them to form gels that will rapidly kill bacteria."

Related Links:

Queen's University



Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
PSA Assay
CanAg PSA EIA
New
Silver Member
Quality Control Material
Multichem ID-B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.