We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanorobots Designed for Drug Delivery

By LabMedica International staff writers
Posted on 16 Dec 2013
Initial phases of research have been started towards developing a nanorobot that in the long run will enable the targeted transport of pharmaceutical agents in the body.

In collaboration with American and Italian colleagues, researchers from Aarhus University (Aarhus, Denmark) have now taken a major move towards developing a nanorobot that will enable the targeted transport of medications in the body. More...


A nanorobot is a trendy term for molecules with a unique feature that enables them to be programmed to perform a specific task. In collaboration with colleagues in Italy and the United States, researchers at Aarhus University have now taken a major step towards building the first nanorobot of DNA molecules that can encapsulate and release active biomolecules.

The nanorobot (also known as a DNA nanocage) will eventually be used to transport drugs throughout the body and thereby have a targeted effect on diseased cells. Using DNA self-assembly, the researchers designed eight unique DNA molecules from the body’s own natural molecules. When these molecules are combined, they spontaneously aggregate in a usable form, the nanocage.

The nanocage has four functional components that transform themselves in response to changes in the surrounding temperature. These transformations either close or open the nanocage. By exploiting the temperature alterations in the environment, the researchers encapsulated an active enzyme called horseradish peroxidase (HRP) in the nanocage. They used HRP as a model because its activity is easy to trace.

This is possible because the nanocage’s outer lattice has apertures with a smaller diameter than the central spherical cavity. This structure makes it possible to encapsulate enzymes or other molecules that are larger than the apertures in the lattice, but smaller than the central cavity.

The researchers published their findings November 26, 2013, in the journal ACS Nano. The researchers demonstrated in their article how they could exploit temperature changes to open the nanocage and allow HRP to be encapsulated before it closes again. They also show that HRP retains its enzyme activity inside the nanocage and converts substrate molecules that are small enough to penetrate the nanocage to products inside.

The encapsulation of HRP in the nanocage is reversible, in such a way that the nanocage is capable of releasing the HRP once more in reaction to temperature changes. The researchers also show that the DNA nanocage with its enzyme load can be taken up by cells in culture. Looking towards the future, the idea behind this nanocage is expected to be used for drug delivery, i.e., as a means of transport for medicine that can target diseased cells in the body in order to achieve a more rapid and more beneficial effect.

The research was performed at the department of molecular biology and genetics and the Interdisciplinary Nanoscience Centre (iNANO) at Aaruhus, Aarhus University, in collaboration with researchers from Duke University (Durham, NC, USA) and the University of Rome (Italy).

Related Links:

Aarhus University
Duke University 
University of Rome



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
New
Pipette
Accumax Smart Series
New
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study has linked blood proteins to Alzheimer’s disease and memory loss (Photo courtesy of Shutterstock)

Blood Test Could Detect Proteins Linked to Alzheimer's Disease and Memory Loss

Alzheimer’s disease has long been associated with sticky amyloid plaques in the brain, but these markers alone do not fully explain the memory loss and cognitive decline patients experience.... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.