We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




DNA Methylation Generates Differential Gene Expression in Sister Stem Cells

By LabMedica International staff writers
Posted on 14 Oct 2013
DNA methylation was shown to be primarily responsible for differences in gene expression displayed by "sister" stem cells.

Despite having identical DNA, sister embryonic stem cells (ESCs) can display considerable differences in their molecular characteristics. More...
How stem cells regulate expression of their genes is crucial to many fundamental biological processes, such as embryonic development, regeneration, and turnover of blood, skin, and other tissues in the body, but especially to cancer.

In a study published in the September 26, 2013, online edition of the journal Stem Cell Reports investigators at the Institute of Cancer Research (London, United Kingdom) used a novel microdissection technique to examine differences in expression of 48 key genes between sister stem cells.

Their system, which was based on single cell RNA analysis, revealed considerable diversities between sister ESCs at both pluripotent and differentiated states. When the stem cells were grown in the presence inhibitors that induced the cells to revert to their most primitive stem cell state, gene expression between sister cells was significantly more similar.

DNA methyltransferases were downregulated in the inhibited ESCs, and the loss of these enzymes was sufficient to generate nearly identical sister cells. These results suggest that DNA methylation was a major cause of the diversity between sister cells at the pluripotent states. DNA methylation stably alters the expression of genes in cells as they divide and differentiate from embryonic stem cells into specific tissues. The resulting change is normally permanent and unidirectional, preventing a differentiated cell from reverting back to a stem cell or converting into another type of tissue.

Senior author Dr. Tomoyuki Sawado, leader of the stem cells and chromatin team at The Institute of Cancer Research, said, "Embryonic stem cell division is generally believed to be a symmetrical process, but what we found was that sister cells are actually often quite different from one another. We used a new technique to separate paired stem cells combined with assays that measure RNA in individual cells. Our research showed that sister stem cells display considerable differences in which genes are expressed. These differences are advantageous for normal stem cells in their constantly changing environment, and in cancer cells, the same characteristics can enable them to evade treatments. If we can control a process like DNA methylation that creates diversity in cell populations, we could create more efficient treatments for cancer."

Related Links:

The Institute of Cancer Research



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.