We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Receptor May Help Spread of Alzheimer’s and Parkinson’s in Brain

By LabMedica International staff writers
Posted on 10 Sep 2013
Scientists have found the process in which corrupted, disease-causing proteins spread in the brain, potentially contributing to Alzheimer’s disease, Parkinson’s disease, and other brain-damaging disorders. More...


The research identifies a specific type of receptor and suggests that blocking it may help treat of these disorders. The receptors are called heparan sulfate proteoglycans (HSPGs). “Many of the enzymes that create HSPGs or otherwise help them function are good targets for drug treatments,” said senior author Marc I. Diamond, MD, a professor of neurology at the Washington University School of Medicine in St. Louis (MO, USA). “We ultimately should be able to hit these enzymes with drugs and potentially disrupt several neurodegenerative conditions.”

The study’s findings were published online August 2013 in the Proceedings of the National Academy of Sciences of the United States of America (PNAS). Over the 10 years, Dr. Diamond has gathered evidence that Alzheimer’s disease and other neurodegenerative disorders spread through the brain in a manner similar to conditions such as mad cow disease, which are caused by misfolded proteins known as prions.

Dr. Diamond and his colleagues have shown that a part of nerve cells’ inner structure known as tau protein can misfold into a formation called an amyloid. These corrupted versions of tau adhere to each other in clumps within the cells. Similar to prions, the clumps spread from one cell to another, seeding additional dispersal by causing copies of tau protein in the new cell to change into amyloids.

In the new study, first author Brandon Holmes, an MD/PhD student, demonstrated that HSPGs are necessary for binding, internalizing, and dispersing clumps of tau. When he genetically inactivated or chemically modified the HSPGs in cell cultures and in a mouse model, clumps of tau could not enter cells, thereby suppressing the spread of misfolded tau from cell to cell. Mr. Holmes also found that HSPGs are essential for the cell-to-cell spread of degraded forms of alpha-synuclein, a protein linked to Parkinson’s disease.

“This suggests that it may one day be possible to unify our understanding and treatment of two or more broad classes of neurodegenerative disease,” Dr. Diamond concluded. “We’re now sorting through about 15 genes to determine which are the most essential for HSPGs’ interaction with tau,” Mr. Holmes said. “That will tell us which proteins to target with new drug treatments.”

Related Links:
Washington University School of Medicine in St. Louis

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Hand-Held Immunofluorescence Analyzer
WS-Si1500
New
Anti-Thyroid Peroxidase Assay
LIAISON Anti-TPO
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: Brain biomarkers of Alzheimer\'s disease can be detected as early as middle age (Photo courtesy of University of Shutterstock)

Blood-Based Biomarkers Could Detect Alzheimer's as Early as Middle Age

As the global population ages, Alzheimer's disease and other dementing diseases are becoming more prevalent. The disease processes leading to Alzheimer's symptoms can begin years or even decades before... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.