We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Some Anticancer Drugs Stop Working at a Hypoxia-Induced Phase Transition Point

By LabMedica International staff writers
Posted on 27 Jun 2013
By applying physical science analytical techniques and a basic understanding of the principles of thermodynamics to the problem of drug resistance in cancer cells with mTOR (mammalian target of rapamycin) mutations, cancer researchers identified a hypoxia-induced phase transition point at which mTOR suppressing drugs were no longer effective.

Hypoxia is a near-universal feature of solid tumors, promoting glycolysis, cellular proliferation, and angiogenesis. More...
The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. Similarly, it has been known that the behavior of mTOR signaling was influenced and altered by hypoxia, but the mechanism behind this was unknown.

Investigators at the Hebrew University of Jerusalem (Israel) and their colleagues at the California Institute of Technology (Pasadena, USA) and the University of California, Los Angeles (USA) worked with a glioblastoma multiforme (GBM) cancer cell model to examine the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2 (oxygen partial pressure). For this study, they employed a microchip technology that facilitated quantification of a panel of functional proteins from statistical numbers of single cells. Results were interpreted using a set of theoretical tools derived from the physical sciences, which enabled the simplification of an otherwise complex biological system.

Results published in the April 9, 2013, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that near 1.5% pO2, the mTOR signaling network - a critical component of hypoxic signaling and a compelling cancer drug target - was deregulated in a manner such that it became unresponsive to mTOR kinase inhibitors. While being unresponsive to mTOR kinase inhibitors near 1.5% pO2, cancer cells did respond at higher or lower pO2 values. These findings were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor.

The investigators concluded that, "Our analysis—which may help explain the undistinguished performance of mTOR inhibitors in certain clinical trials—indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles."

Related Links:
Hebrew University of Jerusalem
California Institute of Technology
University of California, Los Angeles



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Drug Test Kit
DrugCheck 3000
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: Brain biomarkers of Alzheimer\'s disease can be detected as early as middle age (Photo courtesy of University of Shutterstock)

Blood-Based Biomarkers Could Detect Alzheimer's as Early as Middle Age

As the global population ages, Alzheimer's disease and other dementing diseases are becoming more prevalent. The disease processes leading to Alzheimer's symptoms can begin years or even decades before... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.