We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Anticancer Drug Restores Tumor Cell Apoptotic Pathways

By LabMedica International staff writers
Posted on 29 Apr 2013
Print article
Image: Dr. Guillaume Lessene (above) and his collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients (Photo courtesy of Walter and Eliza Hall Institute, Australia).
Image: Dr. Guillaume Lessene (above) and his collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients (Photo courtesy of Walter and Eliza Hall Institute, Australia).
Cancer researchers have developed a drug that blocks a prosurvival gene in cancer cells and renders them vulnerable to elimination from the body by classical cell death (apoptotic) pathways.

The prosurvival protein BCL-XL is often overexpressed in solid tumors and it renders malignant tumor cells resistant to anticancer therapeutics. BCL-XL (B-cell lymphoma-extra-large) is a transmembrane molecule in the mitochondria. It is a member of the BCL-2 family of proteins, and acts as a prosurvival protein by preventing the release of mitochondrial contents such as cytochrome c, which would lead to caspase activation. BCL-2 (B-cell lymphoma 2) was the founding member of the BCL-2 family of apoptosis regulator proteins encoded by the gene of the same name. The formal name for BCL-2 is B-cell lymphoma 2, as it was the second member of a range of proteins initially described in chromosomal translocations involving chromosomes 14 and 18 in follicular lymphomas.

Investigators at the Walter and Eliza Hall Institute (Victoria, Australia) and their colleagues at the biotech company Genentech (San Francisco, CA, USA) sought to develop a drug that would inhibit specifically BCL-XL without affecting other BCL-2 family proteins.

To this end, they employed a high-throughput screen to discover a new series of small molecules targeting BCL-XL and then used this structure to guide development of the drug by medicinal chemistry. They reported in the April 21, 2013, online edition of the journal Nature Chemical Biology that the optimized compound, WEHI-539, had high affinity (subnanomolar range) and selectivity for BCL-XL and potently killed cells by selectively antagonizing its prosurvival activity. WEHI-539 was found to belong to the class of anti-cancer drugs called "BH3-mimetics.” Other drugs in this class include navitoclax (ABT-263) and ABT-199/GDC-0199, which are currently in clinical trials for the treatment leukemia and lymphoma.

Senior author Dr. Guillaume Lessene, professor of chemical biology at the Walter and Eliza Hall Institute, said, "That the development of WEHI-539 was an important milestone on the way to creating potential anticancer agents that act to restore cell death by inhibiting BCL-XL. Although WEHI-539 is not optimized for use in patients, it will be a very valuable tool for researchers to use to dissect how BCL-XL controls cancer cell survival."

"We were very excited to see the team's work culminate in a compound that specifically inhibits BCL-XL," said Dr. Lessene. "WEHI-539 is the first compound that our chemists have developed from scratch, using the three-dimensional structure of BCL-XL to build and refine its design."

Related Links:

Walter and Eliza Hall Institute
Genentech


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.