We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Heart Cells Injected with Gene Become Biologic Pacemakers

By LabMedica International staff writers
Posted on 09 Jan 2013
Scientists have engineered ordinary heart cells to become exact duplicates of highly specialized pacemaker cells by injecting a single gene called Tbx18—a significant move forward in the long search for a biologic therapy to cure damaged and failing heartbeats.

The new development was described online in the journal Nature Biotechnology December 16, 2012. More...
“Although we and others have created primitive biological pacemakers before, this study is the first to show that a single gene can direct the conversion of heart muscle cells to genuine pacemaker cells. The new cells generated electrical impulses spontaneously and were indistinguishable from native pacemaker cells,” said Hee Cheol Cho, PhD, a Cedars-Sinai Heart Institute (Los Angeles, CA, USA) research scientist.

Pacemaker cells generate electrical activity that spreads to other heart cells in an orderly pattern to create rhythmic muscle contractions. If these cells go awry, the heart pumps erratically at best; patients healthy enough to undergo surgery often look to an electronic pacemaker as the only option for survival.

The heartbeat originates in the sinoatrial node (SAN) of the heart’s right upper chamber, where pacemaker cells are gathered. Of the heart’s 10 billion cells, less than 10,000 are pacemaker cells, also called SAN cells. Once reprogrammed by the Tbx18 gene, the newly generated pacemaker cells—induced SAN cells (iSAN cells)—had all similar characteristics of native pacemakers and maintained their SAN-like characteristics even after the effects of the Tbx18 gene had weakened.

However, the Cedars-Sinai researchers, employing a virus engineered to carry a single gene (Tbx18) that plays a key role in embryonic pacemaker cell development, directly reprogrammed cardiomyocytes to specialized pacemaker cells. The new cells took on the distinctive features and function of native pacemaker cells, both in lab cell reprogramming and in guinea pig studies.

Earlier attempts to generate new pacemaker cells resulted in heart muscle cells that could beat on their own. Nevertheless, the engineered cells were closer to typical muscle cells than to pacemaker cells. Other applications employed embryonic stem cells to generate pacemaker cells. However, the risk of contaminating cancerous cells is a persistent hurdle to realizing a therapeutic potential with the embryonic stem cell-based approach. The new work, with astonishing simplicity, creates pacemaker cells that closely resemble the native ones free from the risk of cancer.

For his contributions to biologic pacemaker technology, Dr. Cho recently won the Louis N. and Arnold M. Katz Basic Research Prize, a prestigious young investigator award of the American Heart Association. “This is the culmination of 10 years of work in our laboratory to build a biological pacemaker as an alternative to electronic pacing devices,” said Eduardo Marbán, MD, PhD, director of the Cedars-Sinai Heart Institute and an innovator involved in cardiac stem cell research. A clinical trial of Dr. Marbán’s stem cell therapy for myocardial infarct patients recently found the investigational treatment helped damaged hearts regrow healthy muscle.

If additional studies validate and support findings of the pacemaker cell studies, the researchers reported that they believe therapy might be administered by injecting Tbx18 into a patient’s heart or by creating pacemaker cells in the laboratory and transplanting them into the heart. But additional studies of safety and effectiveness must be conducted before human clinical trials could begin.

Related Links:
Cedars-Sinai Heart Institute


New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.