Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Scientists Create, Watch Tumor-Fighting Immune Cells Attack Cancer

By LabMedica International staff writers
Posted on 10 Aug 2010
Researchers have created a large, well-stocked army of tumor-seeking immune system cells, which they could see in real time, using positron emission tomography (PET) imaging as the cellular payload traveled throughout the body to locate and attack deadly melanomas.

The gene therapy research, conducted with melanomas grown in mice, utilized an inactive HIV-like virus to serve as a vehicle to arm the lymphocytes with T cell receptors, which caused the lymphocytes to become specific killers of cancerous cells. More...
A reporter gene, which glows "hot” during PET scanning, also was inserted into the cells so researchers could track the genetically engineered lymphocytes after they were injected into the blood stream, made their way to the lungs and lymph nodes, and then specifically homed in on the tumors wherever they were located within the body.

"We're trying to genetically engineer the immune system to become a cancer killer and then image how the immune system operates at the same time,” said Dr. Antoni Ribas, an associate professor of hematology/oncology, a researcher at the University of California, Los Angeles' (UCLA) Jonsson Comprehensive Cancer Center (USA) and the senior author of the study. "We knew this approach of arming the lymphocytes with T cell receptors showed significant antitumor activity based on studies in humans. Now, by tracking the immune system's reaction to cancer and imaging it in real time, we can project how the same process that succeeded in mice might behave in people.”

The study was published July 12, 2010, in the early online issue of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS). "The novelty of our work is that we were able to pack together the cancer specific T cell receptor and the PET reporter genes in a single vector and use it in mice with an intact immune system that closely resembles what we would see in real patients,” stated Dr. Richard Koya, an assistant professor of surgical oncology at UCLA's David Geffen School of Medicine, and first author of the study. "We were also gladly surprised to see the targeted tumors literally melt away and disappear, underscoring the power of the combined approach of immune and gene therapy to control cancer.”

The immune system typically does not recognize cancer cells in the body as enemies. The insertion of the antigen-specific T cell receptors--modified to seek out a tumor antigen on the surface of the melanoma cells--in effect uncovers the malignant cells, revealing them as lethal invaders that must be sought out and destroyed. By imaging the genetically modified T cells as they seek out and attack the cancer, the scientists can closely examine the processes of the immune system as it fights malignancies, which could then result in better monitoring response to therapy in melanoma patients.

In this study, the cells were injected into the bloodstreams of the mice, which were found to begin to fight the melanoma within two to three days. The mice were imaged periodically for 10 days to ensure the lymphocytes were indeed killing the cancer. The process to find and kill the malignant cells could take longer in people, according to Dr. Ribas.

If a patient's tumor did not respond well to the administration of the genetically engineered T cells, scientists could determine by PET scanning whether the cells had not successfully made it to the tumor site or, if they did arrive, whether or not they functioned as expected. Monitoring the immune response also could provide insights into ways to better engineer the lymphocytes to more effectively enter and attack the tumors.

In this study, about one million genetically engineered lymphocytes were created and injected into a mouse. In humans, the number of tumor-seeking cells needed to fight the cancer is approximately one billion, according to Dr. Ribas. He and his team are working now on creating a vector, or vehicle, to insert the T cell receptors and reporter gene into the lymphocytes in a way that is safe to use in humans. If all goes well, human studies of the process could begin in approximately one year, Dr. Ribas noted.

Related Links:
University of California, Los Angeles' Jonsson Comprehensive Cancer Center



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.