We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Real Time Cell Analysis System Provides Data on Drug Cytotoxicity

By LabMedica International staff writers
Posted on 10 May 2010
Drug developers now have access to analytical systems that allow for real time determinations of the effects of candidate drugs on cell viability.

An important facet of drug development is to understand how a candidate drug compound affects the molecular and biochemical pathways that regulate cell viability. More...
The other side of the same coin is the need to identify potential cytotoxic side effects of potential therapeutic agents.

To provide a means for collecting critical information on drug cytotoxicity, one of the world's largest biotech companies Roche (Basel, Switzerland), has introduced its xCELLigence System real time cell viability monitoring system. Roche is a world leader in in-vitro diagnostics, tissue-based cancer diagnostics, and a pioneer in diabetes management with a catalogue of differentiated medicines in oncology, virology, inflammation, metabolism, and central nervous system disorders.

The xCELLigence System allows for real-time, label-free dynamic monitoring of cellular phenotypic changes by measuring electrical impedance. The system measures impedance using interdigitated microelectrodes integrated into the bottom of each well of the tissue culture E-Plates 96. Impedance measurements are displayed as Cell Index (CI) values, providing quantitative information about the biological status of the cells, including cell number, cell viability and cell morphology.

Electronic impedance of the microelectrodes is mainly determined by the ionic environment in the regions around the electrodes and can be monitored as baseline impedance by applying an electrical field to the electrodes. The presence of the cells will affect the local ionic environment at the electrode/solution interface, leading to an increase in the electrode impedance. The more cells there are on the electrodes, the larger the increases in electrode impedance. In addition, the impedance change depends on the quality of the cell interaction with the electrodes. For example, increased cell adhesion or spreading will lead to a larger change in electrode impedance. Thus, electrode impedance, which is displayed as cell index (CI) values, can be used to monitor cell viability, number, morphology, and adhesion degree in a number of cell-based assays.

CI was derived as a relative change in measured electrical impedance to represent cell status. This means that when cells are not present or are not well adhered on the electrodes then the CI is zero.

Under the same physiological conditions, when more cells are attached on the electrodes, then the CI values are larger. Thus, CI is a quantitative measure of cell number present in a well of the microplate. Additionally, change in a cell status, such as cell morphology, cell adhesion, or cell viability will lead to a change in CI.

In addition to monitoring cell viability, the xCELLigence System is able to identify culture wells with inappropriate cell numbers at the beginning of the assay, thus minimizing the role of cell seeding and culture-plate edge artifacts during data analysis.

Related Links:

Roche



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.