Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Beneficial Mutation Dissociates Obesity from Diabetes

By LabMedica International staff writers
Posted on 23 Dec 2009
A potentially beneficial mutation has been identified that seems to dissociate obesity from the danger of developing type II diabetes.

Although some 20 to 30% of obese individuals fail to progress to diabetes, and while some nonobese individuals do develop the disease, the current report is perhaps the first to link these observation to the action of a specific gene.

Investigators at the Boston University School of Medicine (MA, USA) discovered a mutation of the Brd2 (Bromodomain-containing protein 2) gene in a population of laboratory mice. More...
These animals became severely obese but did not go on to develop type II diabetes. Specifically, reduced function of the Brd2 gene enhanced glucose tolerance; elevated adiponectin; increased the weight of brown adipose tissue; increased heat production and expression of mitochondrial uncoupling proteins in brown adipose tissue; reduced macrophage infiltration in white adipose tissue; and lowered blood glucose, leading to an improved metabolic profile and avoiding eventual type II diabetes.

These findings were published in the November 2, 2009, online edition of The Biochemical Journal (BJ) where the authors also noted that Brd2 was highly expressed in pancreatic beta cells, where it normally inhibits beta-cell mitosis and insulin transcription.

Senior author Dr. Gerald Denis, assistant professor of pharmacology and medicine at the Boston University School of Medicine, said, "Studies have shown that these individuals [obese but free of type II diabetes] have a reduced "inflammatory profile". Inflammation caused by normal immune cells called macrophages leads to insulin resistance and type II diabetes - this inflammation is typically seen in connection with obesity but it is the inflammation that is a trigger for diabetes, not the obesity itself. The mechanisms that explain this protection from diabetes are not well understood. Much like these protected obese humans, the Brd2-deficient mice have reduced inflammation of fat and never develop failure of the beta cells in the pancreas that is associated with type II diabetes."

"The strong influence of Brd2 levels on insulin production and action suggest that Brd2 is likely to be a promising target for diabetes treatment, but also imply that overactive Brd2 might cause diabetes," said Dr. Denis. "The ways in which Brd2 affects the immune system may also play a part in type I diabetes; further studies to determine this are needed."

Related Links:
Boston University School of Medicine



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.