We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Inhibition of Polarity Protein Gene Triggers Cancer-Like Changes in Cell Shape

By LabMedica International staff writers
Posted on 02 Jul 2009
Researchers have identified a gene linked to the mechanism that determines cell shape and have shown how its lack characterizes certain types of cancer cells.

Investigators from the University of Virginia (Charlottesville, USA) used a novel shRNA lentiviral system to manipulate gene expression in mouse mammary stem/progenitor cells. More...
The shRNA specifically inhibited expression of the protease activated receptor 3 (PAR3) gene. This gene encodes a polarity protein that controls how cells acquire particular shapes, so that they have a top and a bottom.

Results published in the June 15, 2009, issue of the journal Genes & Development revealed that transplantation of Par3-depleted stem/progenitor cells into the mammary fat pad severely disrupted mammary development. The investigators identified a novel function for the atypical protein kinase C (aPKC)-binding domain of Par3 in restricting Par3 and aPKC to the apical region of mammary epithelia in vivo, and found that mammary morphogenesis was dependent on the ability of Par3 to directly bind aPKC.

These results revealed a new function for Par3 in the regulation of progenitor differentiation and epithelial morphogenesis in vivo and demonstrated for the first time an essential requirement for the Par3–aPKC interaction.

"A big problem in biology is that there are many thousands of genes. Testing the function of any one of them in a living organism, such as a mouse, has traditionally been slow and very expensive,” said senior author Dr. Ian Macara, professor of microbiology at the University of Virginia. "The new technology is hundreds of times cheaper and many times faster than traditional approaches. While we used it to study the function of a specific breast-developing gene, our method can be replicated in screening for genes that can suppress tumors or cause cancer.”

Related Links:

University of Virginia




New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
PlGF Test
Quidel Triage PlGF Test
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.