We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Accurately Detects and Diagnoses Colorectal Cancer from Tissue Scans As Well or Better Than Pathologists

By LabMedica International staff writers
Posted on 05 Nov 2021
Print article
Illustration
Illustration

Artificial intelligence (A) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study.

The study, which was conducted by researchers from Tulane University (New Orleans, LA, USA), was designed to test whether AI could be a tool to help pathologists keep pace with the rising demand for their services. Pathologists evaluate and label thousands of histopathology images on a regular basis to tell whether someone has cancer. But their average workload has increased significantly and can sometimes cause unintended misdiagnoses due to fatigue. To conduct the study, the team collected over 13,000 images of colorectal cancer from 8,803 subjects and 13 independent cancer centers in China, Germany and the US. Using the images, which were randomly selected by technicians, they built a machine assisted pathological recognition program that allows a computer to recognize images that show colorectal cancer, one of the most common causes of cancer related deaths in Europe and the US.

The area under the receiver operating characteristic (ROC) curve or AUC is the performance measurement tool that the team used to determine the success of the study. After comparing the computer’s results with the work of highly experienced pathologists who interpreted data manually, the study found that the average pathologist scored at .969 for accurately identifying colorectal cancer manually. The average score for the machine-assisted AI computer program was .98, which is comparable if not more accurate. Using AI to identify cancer is an emerging technology and hasn’t yet been widely accepted. The researchers hope that the study will lead to more pathologists using prescreening technology in the future to make quicker diagnoses.

“Even though a lot of their work is repetitive, most pathologists are extremely busy because there’s a huge demand for what they do but there’s a global shortage of qualified pathologists, especially in many developing countries” said Dr. Hong-Wen Deng, professor and director of the Tulane Center of Biomedical Informatics and Genomics at Tulane University School of Medicine. “This study is revolutionary because we successfully leveraged artificial intelligence to identify and diagnose colorectal cancer in a cost-effective way, which could ultimately reduce the workload of pathologists.”

“The challenges of this study stemmed from complex large image sizes, complex shapes, textures, and histological changes in nuclear staining,” Deng said. “But ultimately the study revealed that when we used AI to diagnose colorectal cancer, the performance is shown comparable to and even better in many cases than real pathologists.”

Related Links:
Tulane University

Gold Supplier
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
New
Automated Nucleic Acid Extraction Instrument
DA3500
New
Albumin Urine Test
Micro-Albumin ELISA
New
Silver Supplier
Urinalysis Dipstick Control
Dipper Urinalysis Dipstick Control

Print article

Channels

Microbiology

view channel
Image: Trichinella sp. found in muscle tissue (Photo courtesy of McGill University)

Laboratory Features of Trichinellosis and Eosinophilia Threshold Determined

Trichinella nativa is a nematode worm, one of the species of the genus Trichinella, found in arctic and subarctic regions. It is highly pathogenic and has a high resistance to freezing. It is encapsulated,... Read more

Industry

view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.