We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Advanced Sequencing Techniques Determine Cancer Genome Variants in Young Patients

By LabMedica International staff writers
Posted on 03 Aug 2021
A recent paper described a three-platform sequencing approach, including whole genome (WGS), exome, and RNA sequencing, that was used to examine tumor and germline genomes from prospectively identified children with newly diagnosed or relapsed/refractory cancers.

Investigators at St. More...
Jude Children's Research Hospital (Memphis, TN, USA) analyzed samples obtained from participants in the "Genomes for Kids" study. Genomes for Kids, which has enrolled about 2,700 cancer patients, is St. Jude’s clinical genomics program. Data generated through the Genomes for Kids project has been made available at no cost to the international research community.

For the current study, whole genome, whole exome, and RNA sequencing of tumor DNA was carried out for 253 patients for whom adequate tumor samples were available.

Results revealed that 86% of patients harbored diagnostic (53%), prognostic (57%), therapeutically-relevant (25%), and/or cancer predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors), and mutational signatures revealing of pathogenic variant effects. Germline variations in one of 156 known, cancer-predisposition genes were identified in 18% of the patients.
Almost two-thirds of the germline variations identified would not have been detected based on current screening guidelines.

"This study showed the feasibility of identifying tumor vulnerabilities and learning to exploit them to improve patient care," said senior author Dr. David Wheeler, director of the precision genomics team at St. Jude Children's Research Hospital. "We want to change the thinking in the field. We showed the potential to use genomic data at the patient level. Even in common pediatric cancers, every tumor is unique, every patient is unique."

The Genomes for Kids study was published in the July 23, 2021, online edition of the journal Cancer Discovery.

Related Links:

St. Jude Children's Research Hospital


Gold Member
Hematology Analyzer
Medonic M32B
Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.