We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





SHERLOCK, DETECTR, CAMERA: Three New CRISPR Technologies

By CLN Stat
Posted on 27 Jun 2018
Scientists in three studies describe how they harnessed CRISPR enzymes to develop or improve upon technology that hunts for genetic sequences linked to viruses or cancer, or capture a cell’s history. More...
Results from all three discoveries appeared in the journal Science.

Two of the studies conducted respectively by CRISPR pioneers Jennifer Doudna, PhD, and Feng Zhang, PhD, looked beyond Cas9, a CRISPR enzyme that’s received a lot of attention for its ability to slice doubled-stranded DNA in specific areas, zeroing in on other types of enzymes as DNA sleuthing tools. Zhang’s study discusses how he and other inventors of the Specific High Sensitivity Reporter unLOCKing, or SHERLOCK, tool were able to expand its target capacity and sensitivity and refine a test format for specific use in disease outbreaks.

SHERLOCK uses a CRISPR-associated protein known as Cas13 which binds to nucleic acid material to find specific targets such as a virus or tumor DNA. Researchers developed a “version 2.0” of SHERLOCK that uses not one but three Cas13 enzymes and one Cas12a enzyme so that it senses multiple targets such as dengue and Zika virus in a single reaction. To enhance SHERLOCK’s capacity for field use, Zhang and his colleagues leveraged technology similar to pregnancy tests to create a paper test that displays results for a single genetic signature. Users dip the paper strip into a processed sample and wait for a line to appear. “The new paper readout for SHERLOCK lets you see whether your target was present in the sample, without instrumentation,” said the study’s co-first author Jonathan Gootenberg in a statement. This innovation means a field-ready diagnostic could be on the horizon for use in outbreak situations.

The SHERLOCK team also combined Cas13 with CRISPR enzyme Csm6 to increase the tool’s sensitivity by threefold. In the study, they were able to find cancer mutations in cell-free DNA from saliva samples. All of these improvements “now give us even more diagnostic information and put us closer to a tool that can be deployed in real-world applications,” said senior author Zhang, core institute member at the Broad Institute and investigator at the McGovern Institute for Brain Research at Massachusetts Institute of Technology.

Doudna, a member of the departments of Molecular and Cell Biology and Chemistry at the University of California-Berkeley, the Howard Hughes Medical Institute, and Lawrence Berkeley National Lab, and her team discovered a new behavior about CRISPR enzyme Ca12, which works similarly to Ca9 in that it uses RNA as a guide to target specific DNA. Once it recognizes its target DNA, however, Ca12 begins to cut single stranded as well as double stranded DNA. “Because this single-strand DNA threading activity is only unleashed after target binding, it can be used as an indicator of the presence of a certain target,” Science editors explained in a summary of the study’s results.

Researchers used this discovery to create a nucleic acid detection technology platform known as the DNA Endonuclease Targeted CRISPR Trans Reporter, or DETECTR. The platform combines Cas12a, its guide RNA, a fluorescent reporter molecule, and recombinase polymerase amplification to create a single reaction. “When warmed to body temperature, RPA rapidly multiplies the number of copies of the target DNA, boosting the chances Cas12a will find one of them, bind and unleash single-strand DNA cutting, resulting in a fluorescent readout,” according to a statement from UC Berkeley.

When applied to patient samples containing human papillomavirus (HPV), DETECTR was able to successfully distinguish between HPV types 16 and 18. This illustrates how sensitive and precise the test is, its authors concluded. “We want to push the limits of the technology, which is potentially applicable in any point-of-care diagnostic situation where there is a DNA component, including cancer and infectious disease,” said study author Janice Chen, a graduate student at Doudna’s lab.

In a third study, researchers Weixin Tang and David Liu, PhD, leveraged Cas9’s target and slice abilities to develop two types of cell data recorders known as CRISPR-mediated analog multi-event recording apparatus or CAMERA systems.

One of the approaches, CAMERA 1, targets cell plasmids, then monitors plasmid ratios of live bacteria cells over time, recording the history of a live bacterial cell’s exposure to nutrients, antibiotics, and other stimuli. Specifically, it records signals by changing the ratio of two DNA plasmids (A and B) in bacterial cells, using Cas9 and a guide RNA to selectively target and destroy just one of the plasmids. In the event A is destroyed, “the result is that the cell starts to replicate both A and B to fill in the loss of A. As a result, the ratio of A:B decreases over time. The more intense the signal, or the longer the signal, the lower this ratio drops,” Liu told CLN Stat.

Another approach, CAMERA 2, records signals by linking a signal of interest to the production of a base editor, “which in turn records the signal directly as a change in the DNA sequence at a specified position in the genome or in plasmid DNA,” Liu said. It works in both bacteria and in mammalian cells.

Liu said his team was able to demonstrate the ability of CAMERA 1 and 2 to record a cell’s exposure to nutrients, antibiotics, light, viruses, and even a kinase inhibitor that changes Wnt signaling in human cells. His and other labs are in the process of using the CAMERA system to study cell signaling during differentiation and other events marked by dramatic changes in cell states.



Visit AACC 2018 >>



New
Gold Member
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Portable Electronic Pipette
Mini 96
Clinical Chemistry System
P780
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Sudhaunsh Deshpande holding the molecularly imprinted polymer-based biosensor (Photo courtesy of University of Liverpool)

AI-Powered Blood Tests Enable Early Detection of Alzheimer’s Disease

Alzheimer’s disease, the most common form of dementia, affects more than 55 million people globally. Early diagnosis is critical for managing symptoms and slowing progression, yet current testing methods... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.