We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Fluorescence Microscopy Combined with AI Enables Detection of Tumors at Early Stage

By LabMedica International staff writers
Posted on 18 Dec 2023

Detecting cancer in the body or monitoring it during therapy is typically a time-consuming process, often conducted in later phases when signs become obvious. Researchers engaged in cancer research are continuously seeking reliable and sensitive techniques to detect a developing tumor at a very early stage and to closely monitor the success or failure of cancer therapy. Therefore, a breakthrough in early cancer diagnosis is a significant advancement. Researchers have now achieved a breakthrough with the development of a test for early diagnosis of cancer.

Researchers at the Paul Scherrer Institute (Würenlingen, Switzerland) have demonstrated that changes in the organization of the cell nucleus of certain blood cells can reliably indicate the presence of a tumor in the body. Using fluorescence microscopy, the team examined the chromatin of these blood cells – DNA packaged into a complex structure. They analyzed about 200 different characteristics, including the external texture, the packing density, and the contrast of the chromatin in lymphocytes or monocytes. They input microscope images from healthy and sick test participants into an artificial intelligence (AI) system and employed “supervised learning” to teach the software known differences.

In the subsequent “deep learning” phase, the algorithm automatically identified differences between “healthy” and “sick” cells that are not discernible to the human eye. This technique enabled the scientists to distinguish between healthy individuals and those with cancer with approximately 85% accuracy. They were also able to correctly identify the type of tumor disease – melanoma, glioma, or head and neck tumor. This new technique, based on blood cell chromatin, is potentially applicable to various cancer types and not just limited to follow-up of proton therapy. It could also be relevant to other forms of therapy, including radiation therapy, chemotherapy, and surgery, although further research is needed to confirm these applications.

“This is the first time anyone, worldwide, has achieved this,” said G.V. Shivashankar, head of PSI‘s Laboratory for Nanoscale Biology who led the research team.

Related Links:
Paul Scherrer Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.