We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




AI-Assisted Tissue Sample Analytics Model Speeds Up Breast Cancer Diagnostics

By LabMedica International staff writers
Posted on 31 May 2022
Print article
Image: Aiforia Clinical AI Model for Breast Cancer; PR improves breast cancer diagnostics (Photo courtesy of Aiforia)
Image: Aiforia Clinical AI Model for Breast Cancer; PR improves breast cancer diagnostics (Photo courtesy of Aiforia)

The field of pathology is undergoing a paradigm shift. Pathologists have relied on the same cumbersome and bias-prone technology for the past 150 years; manual slide analysis with microscopes for tasks like evaluating patient samples to aid cancer diagnostics. Researchers are working to provide tools to overcome the challenges these traditional methods pose. Through automation and digital tools clinical pathology labs can increase the speed and accuracy of their work, thereby enabling patients to receive diagnoses and treatment plans faster while also alleviating the strain on pathologists. Deep learning AI has the potential to bring speed and accuracy to sample evaluation and diagnostics. Now, a novel AI tool can improve prognostic and predictive evaluation in breast cancer diagnostics through its unique functionalities.

The majority of breast cancer cases express estrogen receptor (ER) and/or progesterone receptor (PR). Therefore, the two are considered to be the most significant biomarkers involved in the evaluation of breast cancer. Aiforia Technologies Plc’s (Cambridge, MA, USA) Clinical AI Model for Breast Cancer; ER is an AI model that automates the calculation of ER - a group of proteins present in the majority of breast cancers, therefore a vital biomarker in its diagnosis, as well as a commonly used predictive factor for treatment and prognostic factor for survival in breast cancer. The Aiforia Clinical AI Model for Breast Cancer; PR automates the detection of tumor areas as well as the calculation of PR-positive and negative cells from whole slide images (WSIs) and selected areas and even the viewing and selection of areas with high PR-positive density, or hotspots. The AI-assisted image analysis results are available with speed and consistency. Aiforia currently offers three CE-IVD marked clinical AI models for breast cancer diagnostics as well as the CE-IVD marked PD-L1 AI model for lung cancer diagnostics.

“Since ER and PR positivity in breast cancer are both always measured, it was only natural to develop a model for the detection of PR positive tumor cells as well. It has to be acknowledged that the biomarker, PR's, expression is dependent on the ER biomarker as well,” explained Dr. Nelli Sjöblom MD, Consulting Pathologist at Aiforia Technologies. “However, it still has independent prognostic value and is associated with for example the tumor grade. Breast cancers with ER and/or PR positivity have a lower risk of recurrence of the disease so it is imperative to identify these patients reliably to be able to choose the right therapeutic option.”

Related Links:
Aiforia Technologies Plc 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.