We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Streamlined Method for Telomere Length Measurement Opens New Cancer Diagnostic Opportunities

By LabMedica International staff writers
Posted on 01 Sep 2020
Print article
Image: A magnified image captured by the device used to perform the STAR (single telomere absolute-length rapid) assay. Different fluorescent intensities reflect the length variations in individual telomere molecules (Photo courtesy of National University of Singapore).
Image: A magnified image captured by the device used to perform the STAR (single telomere absolute-length rapid) assay. Different fluorescent intensities reflect the length variations in individual telomere molecules (Photo courtesy of National University of Singapore).
In a novel approach to cancer diagnosis, researchers have developed a high-throughput digital real-time PCR method for rapidly measuring the absolute lengths and quantities of individual telomere molecules.

Genomic studies have shown that telomere length is a promising biomarker for age-associated diseases and cancer. A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. In humans, average telomere length declines from about 11 kilobases at birth to fewer than four kilobases in old age, with the average rate of decline being greater in men than in women. Cancer cells have developed mechanisms to modify and maintain the length of their telomeres, as a means to allow them to grow continually. Currently, clinical analysis of telomeres is rarely carried out due to the lack of a simple and rapid measurement technique.

To streamline telomere analysis, investigators at the National University of Singapore and their collaborators developed the “single telomere absolute-length rapid assay” (STAR), a novel high-throughput digital real-time PCR approach for rapidly measuring the absolute lengths and quantities of individual telomere molecules.

The STAR method, which is based on DNA microarray technology, can measure the absolute telomere length of individual telomeres in less than three hours for up to 48 samples from low amounts (less than one nanogram) of extracted DNA. Moreover, the STAR assay has a wide dynamic range of measurement, as it is capable of measuring telomere lengths from 0.2 to 320 kilobases.

The investigators used the STAR approach to characterize human cancer cell lines and human clinical samples. They reported detecting the telomere maintenance mechanism of each sample accurately based on telomere length distributions. This enabled them to diagnose patients with cancers activated by the Alternative Lengthening of Telomere (ALT) pathway, such as certain sarcomas and gliomas. In particular, the STAR assay was effective in diagnosing the ALT status in pediatric neuroblastoma, which can serve as a useful prognosis indicator for this cancer.

"Our innovation could greatly enhance the speed of diagnosis and simultaneously provide critical telomere information for age-related diseases and cancers. Such a clinically reliable tool that is able to provide accurate telomere profiling will allow for precision therapy and targeted treatments for patients," said senior author Dr. Cheow Lih Feng, assistant professor of biomedical engineering. "The combination of rapid workflow, scalability, and single-molecule resolution makes our system unique in enabling the use of telomere length distribution as a biomarker in disease and population-wide studies. It will be particularly useful for diagnosing telomere maintenance mechanisms within clinical time scales, to determine personalized, therapeutic, or preventive strategies for patients."

The STAR assay was described in the August 21, 2020, online edition of the journal Science Advances.

Related Links:
National University of Singapore

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.