We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

By LabMedica International staff writers
Posted on 16 Apr 2024
Print article
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective of whether mutations are present. Researchers have identified various signature patterns of gene activation in SCLC, and these subtypes dictate how the cancer responds to treatments and its specific vulnerabilities. There is a significant need for blood-based tests that can determine SCLC subtypes, track disease progression, recognize transformations into other types of lung cancer, and identify potential treatment targets, especially when standard biopsies are not feasible. Scientists have now made progress towards a liquid biopsy capable of distinguishing between multiple SCLC subtypes from blood samples.

New research at Fred Hutch Cancer Center (Seattle, WA, USA) has revealed that big-picture patterns of DNA packaging, gene activation, and mutations may provide the information required to develop a blood-based biopsy for SCLC patients. The team demonstrated that they could use cell-free tumor DNA from blood samples to differentiate between SCLC and non-small cell lung cancer (NSCLC), as well as among different subtypes of SCLC. They employed sophisticated computational techniques to analyze patterns in the activation status of hundreds to thousands of genes, revealing the gene activity and regulation within the tumors. Unlike most clinical circulating tumor DNA tests that focus on changes to DNA sequences, this new assay is designed to reveal gene activity and regulation status in tumors using a snippet of cell-free DNA.

SCLC typically responds well initially to chemotherapy, but recurrence is common. Recently, the integration of immune checkpoint inhibitors with standard treatments has improved survival rates, though these are not cures. The distinct gene expression patterns of SCLC and NSCLC can have significant implications for treatment effectiveness. For instance, certain SCLC subtypes show enhanced responsiveness to immunotherapy, which is not universally effective across all patients. Moreover, it is possible for tumors initially diagnosed as NSCLC to evolve into SCLC to evade treatment. This new assay could empower oncologists to customize SCLC treatments as more targeted therapeutic options become available, monitor for disease recurrence, and detect shifts from NSCLC to SCLC, thereby positively impacting both prognosis and treatment approaches.

“Our approach demonstrates that a full-featured circulating tumor DNA assay has the potential to classify clinical subtypes driven by transcriptional programs,” said Fred Hutch computational biologist Gavin Ha, PhD. “This assay expands the boundaries for potentially using circulating tumor DNA to improve treatment selection and cancer management.”

Related Links:
Fred Hutch Cancer Center

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Myocardial Infarction Test
Savvycheck SensA Heart
New
Gold Member
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.