We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

By LabMedica International staff writers
Posted on 16 Apr 2024

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. More...

The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective of whether mutations are present. Researchers have identified various signature patterns of gene activation in SCLC, and these subtypes dictate how the cancer responds to treatments and its specific vulnerabilities. There is a significant need for blood-based tests that can determine SCLC subtypes, track disease progression, recognize transformations into other types of lung cancer, and identify potential treatment targets, especially when standard biopsies are not feasible. Scientists have now made progress towards a liquid biopsy capable of distinguishing between multiple SCLC subtypes from blood samples.

New research at Fred Hutch Cancer Center (Seattle, WA, USA) has revealed that big-picture patterns of DNA packaging, gene activation, and mutations may provide the information required to develop a blood-based biopsy for SCLC patients. The team demonstrated that they could use cell-free tumor DNA from blood samples to differentiate between SCLC and non-small cell lung cancer (NSCLC), as well as among different subtypes of SCLC. They employed sophisticated computational techniques to analyze patterns in the activation status of hundreds to thousands of genes, revealing the gene activity and regulation within the tumors. Unlike most clinical circulating tumor DNA tests that focus on changes to DNA sequences, this new assay is designed to reveal gene activity and regulation status in tumors using a snippet of cell-free DNA.

SCLC typically responds well initially to chemotherapy, but recurrence is common. Recently, the integration of immune checkpoint inhibitors with standard treatments has improved survival rates, though these are not cures. The distinct gene expression patterns of SCLC and NSCLC can have significant implications for treatment effectiveness. For instance, certain SCLC subtypes show enhanced responsiveness to immunotherapy, which is not universally effective across all patients. Moreover, it is possible for tumors initially diagnosed as NSCLC to evolve into SCLC to evade treatment. This new assay could empower oncologists to customize SCLC treatments as more targeted therapeutic options become available, monitor for disease recurrence, and detect shifts from NSCLC to SCLC, thereby positively impacting both prognosis and treatment approaches.

“Our approach demonstrates that a full-featured circulating tumor DNA assay has the potential to classify clinical subtypes driven by transcriptional programs,” said Fred Hutch computational biologist Gavin Ha, PhD. “This assay expands the boundaries for potentially using circulating tumor DNA to improve treatment selection and cancer management.”

Related Links:
Fred Hutch Cancer Center


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.