We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Microfluidic Device Simplifies Cancer Screening Procedures

By LabMedica International staff writers
Posted on 05 Aug 2019
Print article
Image: The experimental results of immunostained cells using the electroactive microwell array with barriers (EMAB) device (Photo courtesy of Dr. Soo Hyeon Kim, University of Tokyo).
Image: The experimental results of immunostained cells using the electroactive microwell array with barriers (EMAB) device (Photo courtesy of Dr. Soo Hyeon Kim, University of Tokyo).
A novel microfluidic device is set to simplify screening for cervical cancer by efficiently isolating and trapping single cells for identification using direct immunostaining techniques.

Several specific tests for cervical screening are available, including p16/Ki67 dual immunostaining for direct identification of cancerous cells in the cervix. Despite these advances in staining technology, manual screening of cells in an entire glass slide remains the standard clinical procedure for quantification and interpretation of immunocytochemical features of the cells.

To improve this situation, investigators at the University of Tokyo (Japan) developed a microfluidic device containing an electroactive microwell array with barriers (EMAB) for highly efficient single-cell trapping followed by on-chip immunofluorescence analysis with minimum loss of the sample.

The EMAB device utilizes patterned electrodes at the bottom of cell-sized microwells to trap single cells using dielectrophoresis (DEP) and cell-holding structures behind the microwells to stabilize the position of trapped cells even without functioning DEP.

The investigators evaluated the performance of the EMAB device for single-cell trapping by sequestering formalin-fixed HeLa cells (a human cervical cancer cell line) and for cell holding by monitoring the release of trapped cells after turning off DEP.

Results revealed that the device interacted with the fixed HeLa cells with 98% efficiency for cell-trapping and 92% efficiency for cell-holding. In addition, the investigators successfully demonstrated high-efficiency on-chip immunofluorescence analysis with minimal loss of sample.

"Major challenges were trapping suspended cells at the single-cell level and analyzing them using antibodies with minimum loss of trapped cells," said contributing author Dr. Soo Hyeon Kim, lecturer in the institute of industrial science at the University of Tokyo. "By just putting a small structure behind the microwell, the cells were efficiently stayed in the microwells even with the unstable flow used for delivery of reagents. Combining EMAB with p16/Ki67 dual immunostaining could be a useful tool to provide molecular evidence that might help pathologists make a cervical cancer diagnosis."

The EMAB device was described in the July 30, 2019, online edition of the journal Biomicrofluidics.

Related Links:
University of Tokyo

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.