We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Genotyping Assay Integrated into Glioma Treatment

By LabMedica International staff writers
Posted on 22 Aug 2018
Print article
Stage II diffuse gliomas are normally challenging to identify using intraoperative histologic methods because of their location, infiltrative growth, low cellularity, and small stereotactic biopsy size. Diagnosis often requires the patient to undergo multiple neurosurgical procedures to collect tumor tissue samples.

A rapid multiplexed polymerase chain reaction (PCR)-based genotyping tool has been developed to diagnose patients with a mutated brain tumor cell line during surgery, which could be used in tandem with a therapeutic tool to eradicate the glioma. Lower-grade gliomas are often characterized by mutations in metabolism-related genes isocitrate dehydrogenase 1 (IDH1) and IDH2.

A large team of scientists led by those at the Harvard Medical School (Boston, MA, USA) first characterized the patterns of IDH mutant glioma progression by analyzing a cohort of 130 patients who underwent resection. Afterwards, they integrated the genotyping tool with the drug delivery system on glioma tissue samples resected from neurosurgery operations to develop a prototype for the proposed combined surgical model. By suppressing wild-type alleles, the team detected mutations in IDH1, Telomerase Reverse Transcriptase (TERT) promoter mutations, H3 Histone Family Member 3A (H3F3A), and BRAF within 27 minutes.

The team then validated the genetic diagnostic tool on extracted human samples, testing the assay on 87 clinically annotated brain tumors. They found that the presence of at least one or more mutations in captured 75 brain tumor samples, noting in their paper that the high rate of positive assignment allows for the confidence to distinguish tumor versus nonneoplastic pathologies.

Daniel P. Cahill, MD, PhD, a neurology associate professor and senior author of the study, said, “We have found that a high frequency of cases can be classified correctly by scoring a handful of these point mutations. We suggested an opportunity, where we could, through an optimized PCR technique, prove a clinically useful categorizing technology in a rapid way.” The continuation study was published on August 6, 2018, in the journal Proceedings of National Academy of Sciences.

Related Links:
Harvard Medical School

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.