We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Rapid Detection of Legionella Offered for Commercial Water Systems

By LabMedica International staff writers
Posted on 02 Apr 2018
Print article
Image: In an outbreak of Legionnaires\' disease, finding the exact source as quickly as possible is essential to preventing further infections. Investigators have now developed a rapid test that identifies Legionella pneumophila in less than one hour. The photograph shows the use of the LegioTyper-chip with the MCR microarray analysis platform (Photo courtesy of Jonas Bemetz, Technical University of Munich).
Image: In an outbreak of Legionnaires\' disease, finding the exact source as quickly as possible is essential to preventing further infections. Investigators have now developed a rapid test that identifies Legionella pneumophila in less than one hour. The photograph shows the use of the LegioTyper-chip with the MCR microarray analysis platform (Photo courtesy of Jonas Bemetz, Technical University of Munich).
A rapid (approximately one hour) DNA microarray-based assay is set to replace classical culture methods for identification of Legionella bacteria in commercial water systems.

The genus Legionella is a pathogenic group of Gram-negative bacteria that includes the species L. pneumophila, the causative agent of legionellosis (all illnesses caused by Legionella) including a pneumonia-type illness called Legionnaires' disease.

Molecular biological detection methods capable of rapidly identifying viable Legionella are important for the control of engineered water systems. The current gold standard based on culture methods takes up to 10 days to show positive results. For this reason, investigators at the Technical University of Munich (Germany) developed a flow-based chemiluminescence (CL) DNA microarray that was able to quantify viable and non-viable Legionella spp. as well as L. pneumophila.

The assay method depends on a measuring chip that was developed in the context of the "LegioTyper" project funded by the German Federal Ministry of Education and Research. This chip not only detected the dangerous pathogen L. pneumophila but also identified which of the approximately 20 subtypes was present.

The foil-based measuring chip used the microarray analysis platform MCR marketed by the biotech company GWK GmbH (Munich, Germany). Using 20 different antibodies, this system provided a complete analysis in less than one hour.

"Compared to previous measurements, the new method not only provides a huge speed advantage," said senior author Dr. Michael Seidel, lecturer in analytical chemistry at the Technical University of Munich, "but is also so cheap that we can use the chip in one-time applications."

Related Links:
Technical University of Munich
GWK

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.